【題目】如圖,矩形ABCD中,,
,F分別在線段BC和AD上,
,將矩形ABEF沿EF折起
記折起后的矩形為MNEF,且平面
平面ECDF.
Ⅰ
求證:
平面MFD;
Ⅱ
若
,求證:
;
Ⅲ
求四面體NFEC體積的最大值.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3)
【解析】
試題分析:(1)證明:因?yàn)樗倪呅?/span>MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.
所以四邊形MNCD是平行四邊形,所以NC∥MD,因?yàn)?/span>NC平面MFD,所以NC∥平面MFD. 4分
(2)證明:連接ED,設(shè)ED∩FC=O.因?yàn)槠矫?/span>MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF, 5分
所以FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,所以 FC⊥ED.所以FC⊥平面NED,
所以ND⊥FC. 8分
(3)解:設(shè)NE=,則EC=4-
,其中0<x<4.由(1)得NE⊥平面FEC,所以四面體NFEC的體積為
,所以
.
當(dāng)且僅當(dāng),即x=2時(shí),四面體NFEC的體積有最大值2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,且
,設(shè)命題
:函數(shù)
在
上單調(diào)遞減;命題
:函數(shù)
在
上為增函數(shù),
(1)若“且
”為真,求實(shí)數(shù)
的取值范圍
(2)若“且
”為假,“
或
”為真,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱 中,
,
,
是棱
上的動(dòng)點(diǎn).
證明: ;
若平面分該棱柱為體積相等的兩個(gè)部分,試確定點(diǎn)
的位置,并求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中所有正確命題的序號(hào)為______.
若方程
表示圓,那么實(shí)數(shù)
;
已知函數(shù)
的圖象與函數(shù)
的圖象關(guān)于直線
對(duì)稱,令
,則
的圖象關(guān)于原點(diǎn)對(duì)稱;
在正方體
中,E、F分別是AB和
的中點(diǎn),則直線CE、
F、DA三線共點(diǎn);
冪函數(shù)的圖象不可能經(jīng)過(guò)第四象限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家射擊隊(duì)的某隊(duì)員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊(duì)員射擊一次 求:
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知與曲線相切的直線
,與
軸,
軸交于
兩點(diǎn),
為原點(diǎn),
,
,(
).
(1)求證:: 與
相切的條件是:
.
(2)求線段中點(diǎn)的軌跡方程;
(3)求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn),動(dòng)圓
經(jīng)過(guò)點(diǎn)
且和直線
相切,記動(dòng)圓的圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)曲線上一點(diǎn)
的橫坐標(biāo)為
,過(guò)
的直線交
于一點(diǎn)
,交
軸于點(diǎn)
,過(guò)點(diǎn)
作
的垂線交
于另一點(diǎn)
,若
是
的切線,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的解析式,并用“五點(diǎn)法作圖”在給出的直角坐標(biāo)系中畫(huà)出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)設(shè)α∈(0,π),f( )=
,求sinα的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com