如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的中點(diǎn),求證:平面D1BQ∥平面PAO.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在四棱錐中,底面ABCD是邊長為1的正方形,
平面ABCD,PA=AB,M,N分別為PB,AC的中點(diǎn),
(1)求證:MN //平面PAD (2)求點(diǎn)B到平面AMN的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,平面平面
,
是以
為斜邊的等腰直角三角形,
分別為
,
,
的中點(diǎn),
,
.
(1)設(shè)是
的中點(diǎn),證明:
平面
;
(2)在內(nèi)是否存在一點(diǎn)
,使
平面
,若存在,請找出點(diǎn)M,并求FM的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,、
分別是正三棱柱
的棱
、
的中點(diǎn),且棱
,
.
(Ⅰ)求證:平面
;
(Ⅱ)在棱上是否存在一點(diǎn)
,使二面角
的大小為
,若存在,求
的長;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是PC、PD、BC的中點(diǎn),現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖2)
(1)求二面角G-EF-D的大小;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知三棱柱的三視圖如圖所示,
其中正視圖
和側(cè)視圖
均為矩形,俯視圖
中,
。
(I)在三棱柱中,求證:
;
(II)在三棱柱中,若
是底邊
的中點(diǎn),求證:
平面
;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com