【題目】“把你的心我的心串一串,串一株幸運草串一個同心圓…”一位數學老師一這句歌詞為靈感構造了一道名為《愛2017》的題目,請你解答此題:設O為坐標原點,直線l與圓C1:x2+y2=1相切且與圓C2:x2+y2=r2(r>1)相交于A、B兩不同點,已知E(x1,y1)、F(x2,y2)分別是圓C1、圓C2上的點.
(1)求r的值;
(2)求△OEF面積的最大值;
(3)若△OEF的外接圓圓心P在圓C1上,已知點D(3,0),求|DE|2+|DF|2的取值范圍.
【答案】(1)r=2;(2)1;(3)[23﹣6,23+6
].
【解析】試題分析:(1)直線l與圓C1:x2+y2=1相切的切點P是弦AB的中點,利用勾股定理,可得r的值;(2)當OE⊥OF時,△OEF面積取最大值;(3)△OEF的外接圓圓心P在圓C1上,則△OEF的外接圓與C2內切,且∠EOP=60°,不妨令P(cosα,sinα),則F(2cosα,2sinα),E(cos(α+60°),sin(α+60°)),結合點D(3,0),利用向量法結合三角函數,求出|DE|2+|DF|2的取值范圍.
試題解析:
(1)如圖所示,直線l與圓C1:x2+y2=1相切的切點P是弦AB的中點,
且OP⊥AB,AB=2AP=2,解得r=2;
(2)△OEF的面積S=|OE|×|OF|sin∠EOF,
故當OE⊥OF時,△OEF面積的最大值為:S=|OE|×|OF|=
×1×2=1;
(3)△OEF的外接圓圓心P在圓C1上,
即PE=PF=PO=1,
則△OEF的外接圓與C2內切,且∠EOP=60°,
不妨令P(cosα,sinα),則F(2cosα,2sinα),E(cos(α+60°),sin(α+60°)),
∵點D(3,0),
∴=(cos(α+60°)﹣3,sin(α+60°)),
=(2cosα﹣3,2sinα),
|DE|2+|DF|2=[cos(α+60°)﹣3]2+sin2(α+60°)+(2cosα﹣3)2+(2sinα)2
=23﹣15cosα+3sinα
=6sin(α﹣φ)+23,其中tanφ=
,
故|DE|2+|DF|2的取值范圍為[23﹣6,23+6
]
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在點
處的切線方程;
(2)求函數的極值;
(3)若函數在區間
上是增函數,試確定
的取值范圍.
【答案】(1);(2)當
時,
恒成立,
不存在極值.當
時,
有極小值
無極大值.(3)
.
【解析】試題分析:
(1)當時,求得
,得到
的值,即可求解切線方程.
(2)由定義域為,求得
,分
和
時分類討論得出函數的單調區間,即可求解函數的極值.
(3)根據題意在
上遞增,得
對
恒成立,進而求解實數
的取值范圍.
試題解析:
(1)當時,
,
,
,又
,∴切線方程為
.
(2)定義域為,
,當
時,
恒成立,
不存在極值.
當時,令
,得
,當
時,
;當
時,
,
所以當時,
有極小值
無極大值.
(3)∵在
上遞增,∴
對
恒成立,即
恒成立,∴
.
點睛:導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數學中重要的知識點,所以在歷屆高考中,對導數的應用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導數的應用的考查主要從以下幾個角度進行: (1)考查導數的幾何意義,往往與解析幾何、微積分相聯系. (2)利用導數求函數的單調區間,判斷單調性;已知單調性,求參數. (3)考查數形結合思想的應用.
【題型】解答題
【結束】
22
【題目】已知圓:
和點
,
是圓
上任意一點,線段
的垂直平分線和
相交于點
,
的軌跡為曲線
.
(1)求曲線的方程;
(2)點是曲線
與
軸正半軸的交點,直線
交
于
、
兩點,直線
,
的斜率分別是
,
,若
,求:①
的值;②
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線 ,曲線C2的參數方程為:
,(θ為參數),以O為極點,x軸的正半軸為極軸的極坐標系.
(1)求C1 , C2的極坐標方程;
(2)射線 與C1的異于原點的交點為A,與C2的交點為B,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經濟收入.紫甘薯對環境溫度要求較高,根據以往的經驗,隨著溫度的升高,其死亡株數成增長的趨勢.下表給出了2018年種植的一批試驗紫甘薯在不同溫度時6組死亡的株數:
溫度 | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數 | 6 | 11 | 20 | 27 | 57 | 77 |
經計算:,
,
,
.
其中分別為試驗數據中的溫度和死亡株數,
.
(1)與
是否有較強的線性相關性? 請計算相關系數
(精確到
)說明.
(2)并求關于
的回歸方程
(
和
都精確到
);
(3)用(2)中的線性回歸模型預測溫度為時該批紫甘薯死亡株數(結果取整數).
附:對于一組數據,
,……,
,
①線性相關系數,通常情況下當
大于0.8時,認為兩
個變量有很強的線性相關性.
②其回歸直線的斜率和截距的最小二乘估計分別為:
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平直角坐標系中,已知點
,
(1)在軸的正半軸上求一點
,使得以
為直徑的圓過
點,并求該圓的方程;
(2)在(1)的條件下,點在線段
內,且
平分
,試求
點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com