已知=(2,1),
=(-3,4),則3
+4
= .
科目:高中數學 來源:河南省衛輝市第一中學2012屆高三4月考試數學理科試題 題型:047
已知|x1-2|<1,|x2-2|<1.
(Ⅰ)求證:2<x1+x2<6,|x1-x2|=2;
(Ⅱ)若f(x)=x2-x+1,求證:|x1-x2|<|f(x1)-f(x2)|<5|x1-x2|.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:
=1:2,
:
=3:2,連結AQ,BP,設它們交于點R,若
=a,
=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2014屆廣東省高一期中考試文科數學試卷A卷(解析版) 題型:解答題
已知函數f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.
(1)求函數f(x)的表達式;
(2)若數列{an}滿足a1=,an+1=f(an),bn=
-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數列,q=.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=+
+…+
<
+
+…+
==1-
<1(n∈N*).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com