日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
對于數列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數列A為“0-1數列”.定義變換T,T將“0-1數列”A中原有的每個1都變成0,1,原有的每個0都變成1,0.例如A:1,0,1,則T(A):0,1,1,0,0,1.設A是“0-1數列”,令Ak=T(Ak-1),k=1,2,3,…
(1)若數列A2:1,0,0,1,0,1,1,0,1,0,0,1.則數列A   
(2)若A為0,1,記數列Ak中連續兩項都是0的數對個數為lk,k=1,2,3,…,則l2n關于n的表達式.是   
【答案】分析:(1)由變換T的定義“T將“0-1數列”A中原有的每個0都變成1,0”,直接可得數列A
(2)設Ak中有bk個01數對,Ak+1中的00數對只能由Ak中的01數對得到,所以lk+1=bk,Ak+1中的01數對有兩個產生途徑:①由Ak中的1得到; ②由Ak中00得到,由此能求出l2n關于n的表達式.
解答:解:(1)∵數列A2:1,0,0,1,0,1,1,0,1,0,0,1,
∴由變換T的定義可得A1:0,1,1,0,0,1.…(2分)
A:1,0,1.…(4分)
(2)設Ak中有bk個01數對,Ak+1中的00數對只能由Ak中的01數對得到,
所以lk+1=bk,Ak+1中的01數對有兩個產生途徑:①由Ak中的1得到; ②由Ak中00得到,
由變換T的定義及A:0,1可得Ak中0和1的個數總相等,且共有2k+1個,
所以bk+1=lk+2k
所以lk+2=lk+2k
由A:0,1可得A1:1,0,0,1,A2:0,1,1,0,1,0,0,1,
所以l1=1,l2=1,
當k≥3時,
若k為偶數,lk=lk-2+2k-2,lk-2=lk-4+2k-4,…l4=l2+22
上述各式相加可得lk=1+22+24+…+2k-2==(2k-1),
經檢驗,k=2時,也滿足lk=(2k-1).
∴l2n=(4n-1).
故答案為:1,0,1;(4n-1).
點評:本題考查數列的應用,解題時要認真審題,注意新定義的準確理解,解題時要合理地挖掘題設中的隱含條件,恰當地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于數列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數列A為“0-1數列”.定義變換T,T將“0-1數列”A中原有的每個1都變成0,1,原有的每個0都變成1,0.例如A:1,0,1,則T(A):0,1,1,0,0,1.設A0是“0-1數列”,令Ak=T(Ak-1),k=1,2,3,…
(1)若數列A2:1,0,0,1,0,1,1,0,1,0,0,1.則數列A0
1,0,1
1,0,1

(2)若A0為0,1,記數列Ak中連續兩項都是0的數對個數為lk,k=1,2,3,…,則l2n關于n的表達式.是
l2n=
1
3
(4n-1)
l2n=
1
3
(4n-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•西城區一模)對于數列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數列A變換成數列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續對數列B進行“T變換”,得到數列C:c1,c2,c3,依此類推,當得到的數列各項均為0時變換結束.
(Ⅰ)試問A:2,6,4經過不斷的“T變換”能否結束?若能,請依次寫出經過“T變換”得到的各數列;若不能,說明理由;
(Ⅱ)設A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(ⅰ)求a,b;
(ⅱ)若數列B再經過k次“T變換”得到的數列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

科目:高中數學 來源:北京市西城區2012屆高三4月第一次模擬考試數學文科試題 題型:044

對于數列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數列A變換成數列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續對數列B進行“T變換”,得到數列C:c1,c2,c3,依此類推,當得到的數列各項均為0時變換結束.

(Ⅰ)試問A:2,6,4經過不斷的“T變換”能否結束?若能,請依次寫出經過“T變換”得到的各數列;若不能,說明理由;

(Ⅱ)設A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.

(ⅰ)求a,b;

(ⅱ)若數列B再經過k次“T變換”得到的數列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于數列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數列A變換成數列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續對數列B進行“T變換”,得到數列C:c1,c2,c3,依此類推,當得到的數列各項均為0時變換結束.
(Ⅰ)試問A:2,6,4經過不斷的“T變換”能否結束?若能,請依次寫出經過“T變換”得到的各數列;若不能,說明理由;
(Ⅱ)設A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(ⅰ)求a,b;
(ⅱ)若數列B再經過k次“T變換”得到的數列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012年北京市西城區高考數學一模試卷(文科)(解析版) 題型:解答題

對于數列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數列A變換成數列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續對數列B進行“T變換”,得到數列C:c1,c2,c3,依此類推,當得到的數列各項均為0時變換結束.
(Ⅰ)試問A:2,6,4經過不斷的“T變換”能否結束?若能,請依次寫出經過“T變換”得到的各數列;若不能,說明理由;
(Ⅱ)設A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(ⅰ)求a,b;
(ⅱ)若數列B再經過k次“T變換”得到的數列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区二区三区精品 | 毛茸茸成熟亚洲人 | 99热精品在线 | 精品一区二区三区四区五区 | 国产综合视频 | 巨大黑人极品videos精品 | jizz国产免费 | 国产目拍亚洲精品99久久精品 | 污视频免费网站观看 | 日韩在线播放欧美字幕 | 国产精品视频一区二区免费不卡 | 亚洲自拍一二三区 | 国产在线二区 | 少妇精品久久久久久久久久 | а天堂中文最新一区二区三区 | 日本xxxxx片免费观看19 | 美日韩一区 | 亚洲精品久久久久久久久久 | 亚洲午夜电影 | 久一在线 | 亚洲天堂男人 | 在线成人av| 天天操操 | 国产精品乱码久久久久久 | 国产成人在线视频 | 漂亮少妇videoshd忠贞 | 欧美在线综合视频 | 日本久久久久久久 | 欧美三级视频 | 欧美一区二区三区视频 | 一区二区在线播放视频 | 91精品视频在线播放 | 久久综合久久88 | 久久国产精品一区 | 国产乱码精品一区二区三区av | 在线观看免费视频日韩 | 国产一区二区久久 | 日韩午夜av| 欧美伊人影院 | jizz国产免费 | 色丁香婷婷 |