【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眼的時間,數據如下表(單位:小時)
甲部門 | 6 | 7 | 8 | |||
乙部門 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數?
(2)若將每天睡眠時間不少于7小時視為睡眠充足,現從該單位任取1人,估計拍到的此人為睡眠充足者的概率;
(3)再從甲部門和乙部門抽出的員工中,各隨機選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設所有員工睡眠的時間相互獨立,求A的睡眠時間不少于B的睡眼時間的概率.
【答案】(1)24人;(2);(3)
.
【解析】
(1)運用分層抽樣的特點,計算可得所求;
(2)求得從15人中抽一個人可得15種,每天睡眠時間不少于7小時的共有7人,由古典概率的計算公式可得所求;
(3)運用分類討論思想,由古典概率的計算公式計算可得所求.
(1)由題意知,抽取的員工共15人,其中乙部門抽取6個.
故乙部門的員工人數為(或
);
(2)從該單位中任取1人,此人為睡眠充足者的概率約為從樣本中抽取1人,抽到睡眠充足者的頻率,故所求的概率約為;
(3)從甲部門和乙部門抽出的員工中,各隨機選取一人,共有種可能情況;
由題意知,若A睡眠時間小時數為6,則B的睡眠時間小時數為5.5,6之一,有2種情況;
若A的睡眠時間小時數為7,則B的睡眠時間小時數為5.5,6,6.5,7之一,有4種情況;
若A的睡眠時間小時數為8.則B的睡眠時間小時數為5.5,6,6.5,7,7.5,8之一,有6種情況;
故所求的概率.
科目:高中數學 來源: 題型:
【題目】某區的區人大代表有教師6人,分別來自甲、乙、丙、丁四個學校,其中甲校教師記為,乙校教師記為
,丙校教師記為
,丁校教師記為
.現從這6名教師代表中選出3名教師組成十九大報告宣講團,要求甲、乙、丙、丁四個學校中,每校至多選出1名.
(1)請列出十九大報告宣講團組成人員的全部可能結果;
(2)求教師被選中的概率;
(3)求宣講團中沒有乙校教師代表的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數部分圖象如圖所示.
(1)求函數的解析式及
的單調遞增區間;
(2)把函數圖象上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移
個單位,得到函數
的圖象,求關于x的方程
在
上所有的實數根之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有三個鄉鎮,分別位于一個矩形的兩個頂點M,N及
的中點S處,
,現要在該矩形的區域內(含邊界),且與M,N等距離的一點O處設一個宣講站,記O點到三個鄉鎮的距離之和為
.
(1)設,試將L表示為x的函數并寫出其定義域;
(2)試利用(1)的函數關系式確定宣講站O的位置,使宣講站O到三個鄉鎮的距離之和最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在
上的最大值;
(2)令,若
在區間
上為單調遞增函數,求
的取值范圍;
(3)當 時,函數
的圖象與
軸交于兩點
,且
,又
是
的導函數.若正常數
滿足條件
.證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2cosωx).設函數f(x)=a·b+λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數,且ω∈
.
(1)求函數f(x)的最小正周期;
(2)若y=f(x)的圖象經過點,求函數f(x)在區間
上的取值范圍
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com