【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.
【答案】
(1)證明:∵PD⊥平面ABCD,AC平面ABCD
∴PD⊥AC
∵底面ABCD是正方形,
∴BD⊥AC,
∵PD、BD是平面PBD內的相交直線,
∴AC⊥平面PBD
∵DE平面PBD,
∴AC⊥DE
(2)解:分別以DP、DA、DC所在直線為x、y、z軸,建立空間直角坐標系,如圖所示
設BC=3,則CP=3 ,DP=3,結合2BE=EP可得
D(0,0,0),A(0,3,0),C(0,0,3),P(3,0,0),
E(1,2,2)
∴ =(0,3,﹣3),
=(3,0,﹣3),
=(1,2,﹣1)
設平面ACP的一個法向量為 =(x,y,z),可得
,取x=1得
=(1,1,1)
同理求得平面ACE的一個法向量為 =(﹣1,1,1)
∵cos< ,
>=
=
,∴二面角E﹣AC﹣P的余弦值等于
【解析】(1)由線面垂直的定義,得到PD⊥AC,在正方形ABCD中,證出BD⊥AC,根據線面垂直判定定理證出AC⊥平面PBD,從而得到AC⊥DE;(2)建立空間直角坐標系,如圖所示.得D、A、C、P、E的坐標,從而得到 、
、
的坐標,利用垂直向量數量積為零的方法,建立方程組解出
=(1,1,1)是平面ACP的一個法向量,
=(﹣1,1,1)是平面ACE的一個法向量,利用空間向量的夾角公式即可算出二面角E﹣AC﹣P的余弦值.
【考點精析】解答此題的關鍵在于理解直線與平面垂直的性質的相關知識,掌握垂直于同一個平面的兩條直線平行.
科目:高中數學 來源: 題型:
【題目】渝州集團對所有員工進行了職業技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數據的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業技能好能手”的概率;
(2)公司結合這次測試成績對員工的績效獎金進行調整(績效獎金方案如表),若以甲部門這10人的樣本數據來估計該部門總體數據,且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于3a的人數為ξ,求ξ的分布列及數學期望.
分數 | [60,70) | [70,80) | [80,90) | [90,100] |
獎金 | a | 2a | 3a | 4a |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個單位長度,所得函數y=f(x)為偶函數時,則φ的一個值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,曲線C的參數方程為 (θ為參數),在以原點O為極點,以x軸正半軸為極軸,且與直角坐標系有相同的長度單位的極坐標系中,直線l的方程為ρsin(θ+
)=2
.
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在斜三棱柱ABC﹣A′B′C′中,AC=BC=A′A=A′C,A′在底面ABC上的射影為AB的中點D,E為線段BC的中點.
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求二面角D﹣B′C﹣B的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分別為BP,BE,PC的中點.
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點,且PM= ,求二面角C﹣EF﹣M的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com