【題目】設函數f(x)=|2x﹣1|﹣|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f(x0)+2m2<4m,求實數m的取值范圍.
【答案】解:(Ⅰ)①當x<﹣2時,f(x)=1﹣2x+x+2=﹣x+3,令﹣x+3>0,解得x<3,又∵x<﹣2,∴x<﹣2; ②當﹣2≤x≤ 時,f(x)=1﹣2x﹣x﹣2=﹣3x﹣1,令﹣3x﹣1>0,解得x<﹣
,又∵﹣2≤x≤
,∴﹣2≤x<﹣
;
③當x 時,f(x)=2x﹣1﹣x﹣2=x﹣3,令x﹣3>0,解得x>3,又∵x
,∴x>3.
綜上,不等式f(x)>0的解集為(﹣∞,﹣ )∪(3,+∞).
(Ⅱ)由(I)得f(x)= ,
∴fmin(x)=f( )=﹣
.
∵x0∈R,使得f(x0)+2m2<4m,∴4m﹣2m2>﹣ ,
整理得:4m2﹣8m﹣5<0,解得:﹣ <m<
,
∴m的取值范圍是(﹣ ,
)
【解析】(1)利用零點分區間討論去掉絕對值符號,化為分段函數,在每一個前提下去解不等式,每一步的解都要和前提條件找交集得出每一步的解,最后把每一步最后結果找并集得出不等式的解;(2)根據第一步所化出的分段函數求出函數f(x)的最小值,若x0∈R,使得f(x0)+2m2<4m成立,只需4m﹣2m2>fmin(x),解出實數m的取值范圍.
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】對于定義域為D的函數y=f(x),如果存在區間[m,n]D,其中m<n,同時滿足:①f(x)在[m,n]內是單調函數;②當定義域是[m,n]時,f(x)的值域也是[m,n]. 則稱函數f(x)是區間[m,n]上的“保值函數”,區間[m,n]稱為“保值區間”.
(1)求證:函數g(x)=x2﹣2x不是定義域[0,1]上的“保值函數”.
(2)若函數f(x)=2+ ﹣
(a∈R,a≠0)是區間[m,n]上的“保值函數”,求a的取值范圍.
(3)對(2)中函數f(x),若不等式|a2f(x)|≤2x對x≥1恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某機械廠要將長,寬
的長方形鐵皮
進行裁剪.已知點
為
的中點,點
在邊
上,裁剪時先將四邊形
沿直線
翻折到
處(點
分別落在直線
下方點
處,
交邊
于點
),再沿直線
裁剪.
(1)當時,試判斷四邊形
的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了普及環保知識,增強環保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環保知識測試.
(Ⅰ)根據題目條件完成下面2×2列聯表,并據此判斷是否有99%的把握認為環保知識成績優秀與學生的文理分類有關.
優秀人數 | 非優秀人數 | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅱ)現已知A,B,C三人獲得優秀的概率分別為 ,設隨機變量X表示A,B,C三人中獲得優秀的人數,求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: +
=1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=﹣x+3與橢圓E有且只有一個公共點T.
(Ⅰ)求橢圓E的方程及點T的坐標;
(Ⅱ)設O是坐標原點,直線l′平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數λ,使得|PT|2=λ|PA||PB|,并求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,修建一條公路需要一段環湖彎曲路段與兩條直道平滑連接(相切).已知環湖彎曲路段為某三次函數圖像的一部分,則該函數的解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,過點C作CO⊥AB,垂足為O,將△OBC沿CO折起,如圖2使得平面CBO與平面AOCD所成的二面角的大小為θ(0<θ<π),E,F分別為BC,AO的中點
(1)求證:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com