日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知函數(shù)f(x)=x3-3x,x∈R,曲線y=f(x)在點(diǎn)P(x,f(x))處的切線方程為y=g(x),設(shè)h(x)=f(x)-g(x).
(Ⅰ)若x=2,求函數(shù)h(x)的解析式;
(Ⅱ)若x∈R,討論函數(shù)h(x)的單調(diào)性.
【答案】分析:(I)因?yàn)槭歉叽魏瘮?shù),所以用導(dǎo)數(shù)求得函數(shù)的切線的方程,即得g(x),從而得到h(x)
(II)先整理得到h(x)=x3-3x2x+2x3,再求導(dǎo),由導(dǎo)數(shù)的正負(fù)來確定其單調(diào)性,要注意x的影響.
解答:解:(I)f′(x)=3x2-3,f(2)=2,f′(2)=9
∴切線方程為:y-2=9(x-2)
∴g(x)=9x-16
∴h(x)=x3-12x+16
(II)設(shè)曲線y=f(x)在點(diǎn)P(x,f(x))處的切線方程為:y=(3x-3)x-2x3
∴g(x)=(3x-3)x-2x3
∴h(x)=x3-3x2x+2x3
∴h′(x)=3x2-3x2=3(x-x)(x+x
令h′(x)=3x2-3x2=3(x-x)(x+x)<0
①當(dāng)x>0時(shí),h(x)在(-∞,-x]是增函數(shù),在[-x,,x]是減函數(shù),在[x,,+∞)是增函數(shù);
②當(dāng)x<0時(shí),h(x)在(-∞,-x]是增函數(shù),在[-x,,x]是減函數(shù),在[x,,+∞)是增函數(shù);
③當(dāng)x=0時(shí),h(x)在(-∞,+∞)是增函數(shù);
綜上:①當(dāng)x>0時(shí),h(x)的增區(qū)間是:(-∞,-x],[x,,+∞),減區(qū)間是:[-x,,x];
②當(dāng)x<0時(shí),h(x)的增區(qū)間是:(-∞,x],[-x,,+∞),減區(qū)間是:[x,,-x];
③當(dāng)x=0時(shí),h(x)的增區(qū)間是:(-∞,+∞).
點(diǎn)評:本題主要考查導(dǎo)數(shù)的幾何意義及用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,由于參數(shù)的存在,增大了題目的難度,應(yīng)注意分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 精品久久影院 | 国产精品久久av | 日韩精品网站 | 亚洲综合二区 | 久久亚洲国产精品日日av夜夜 | 黄色av电影在线看 | 亚洲精区| 精品亚洲自拍 | 韩国毛片在线观看 | 亚州中文字幕 | 中文二区| 一区毛片| www.欧美| 免费超碰在线观看 | 黄色av免费看 | 四虎影院最新网址 | 久久在线 | 一区二区三区免费看 | 天天干视频 | 久久成年人视频 | 欧美精品久久久久久久亚洲调教 | 欧美1区| 久久久久久久久国产 | 日韩国产欧美一区 | 午夜精品影院 | 欧美黄色网 | 夜夜操天天操 | www伊人| 在线观看成人网 | 国产在线第一页 | 中文在线一区二区 | 成人二区| 日日日操 | av在线播放免费 | 日本a视频| 国产精品极品美女在线观看免费 | 日本毛片视频 | 久久精品国产77777蜜臀 | 日韩中文字幕一区 | 国产日韩视频在线观看 | 超碰超碰97 |