已知等差數列的首項為
,公差為
,數列
滿足
,
.
(1)求數列與
的通項公式;
(2)記,求數列
的前
項和
.
(注:表示
與
的最大值.)
科目:高中數學 來源: 題型:解答題
設等差數列的公差為
,且
.若設
是從
開始的前
項數列的和,即
,
,如此下去,其中數列
是從第
開始到第
)項為止的數列的和,即
.
(1)若數列,試找出一組滿足條件的
,使得:
;
(2)試證明對于數列,一定可通過適當的劃分,使所得的數列
中的各數都為平方數;
(3)若等差數列中
.試探索該數列中是否存在無窮整數數列
,使得
為等比數列,如存在,就求出數列
;如不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}中,a1=8,a4=2,且滿足an+2+an=2an+1.
(1)求數列{an}的通項公式;
(2)設Sn是數列{|an|}的前n項和,求Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′=0.
(1)求數列{an}的通項公式;
(2)若bn=2(an+),求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}的首項為a1=1,其前n項和為Sn,且對任意正整數n有n,an,Sn成等差數列.
(1)求證:數列{Sn+n+2}成等比數列.
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
等差數列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項和為Sn.
(1)求數列{an}的通項公式.
(2)設數列{bn}滿足bn=,其前n項和為Tn,求證:Tn<
(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知n∈N*,數列{dn}滿足dn=,數列{an}滿足an=d1+d2+d3+…+d2n,又知在數列{bn}中,b1=2,且對任意正整數m,n,
.
(1)求數列{an}和數列{bn}的通項公式;
(2)將數列{bn}中的第a1項,第a2項,第a3項,…,第an項,…刪去后,剩余的項按從小到大的順序排成新數列{cn},求數列{cn}的前2 013項和.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com