分析 由題意設t=$\frac{x}{y}$+$\frac{y}{x}$,由條件和基本不等式求出t的范圍,求出$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$代入代數(shù)式化簡,利用二次函數(shù)的性質求出代數(shù)式的最小值,即可得到答案
解答 解:由題意設t=$\frac{x}{y}$+$\frac{y}{x}$,
由x,y為非零實數(shù)得,當xy>0時,$\frac{x}{y}$+$\frac{y}{x}$≥2,
當xy<0時,-($\frac{x}{y}$+$\frac{y}{x}$)≥2,則$\frac{x}{y}$+$\frac{y}{x}$≤-2(當且僅當$\frac{x}{y}$=$\frac{y}{x}$時取等號),
所以t≤-2或t≥2,
因為($\frac{x}{y}$+$\frac{y}{x}$)2=$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$+2,所以$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$=($\frac{x}{y}$+$\frac{y}{x}$)2-2=t2-2,
則$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$-8($\frac{x}{y}$+$\frac{y}{x}$)+15=t2-8t+13,
設y=t2-8t+13=(t-4)2-3,
由t≤-2或t≥2得,
當t=4時函數(shù)y取到最小值是:-3,
故答案為:-3.
點評 本題考查基本不等式,二次函數(shù)的性質,以及換元法的應用,屬于中檔題
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)的圖象關于直線x=$\frac{π}{2}$對稱 | B. | f(x)的周期為π | ||
C. | 若|f(x1)|=|f(x2)|,則x1=x2+2kπ(k∈Z) | D. | f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上單調遞減 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{π}{2}$ | B. | 1 | C. | 0 | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com