【題目】數(shù)列:
滿(mǎn)足:
,
或1(
).對(duì)任意
,都存在
,使得
.,其中
且兩兩不相等.
(I)若.寫(xiě)出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若
,證明:
;
(Ⅲ)若,求
的最小值.
【答案】(Ⅰ) ②③(Ⅱ)見(jiàn)解析(Ⅲ)的最小值為
【解析】試題分析:(Ⅰ)依據(jù)定義檢驗(yàn)給出的數(shù)列是否滿(mǎn)足要求條件.(Ⅱ)當(dāng)時(shí),
都在數(shù)列中出現(xiàn),可以證明
至少出現(xiàn)4次,2至少出現(xiàn)2次,這樣
. (Ⅲ)設(shè)
出現(xiàn)頻數(shù)依次為
.同(Ⅱ)的證明,可得:
,
,
,┄,
,
,
,則
,我們?cè)贅?gòu)造數(shù)列:
,證明該數(shù)列滿(mǎn)足題設(shè)條件,從而
的最小值為
.
解析:(Ⅰ)對(duì)于①,,對(duì)于
,
或
,不滿(mǎn)足要求;對(duì)于②,若
,則
,且
彼此相異,若
,則
,且
彼此相異,若
,則
,且
彼此相異,故②符合題目條件;同理③也符合題目條件,故符合題目條件的數(shù)列的序號(hào)為②③.
注:只得到 ② 或只得到 ③ 給[ 1分],有錯(cuò)解不給分.
(Ⅱ)當(dāng)時(shí),設(shè)數(shù)列
中
出現(xiàn)頻數(shù)依次為
,由題意
.
① 假設(shè),則有
(對(duì)任意
),與已知矛盾,所以
.同理可證:
.
② 假設(shè),則存在唯一的
,使得
.那么,對(duì)
,有
(
兩兩不相等),與已知矛盾,所以
.
綜上: ,
,
,所以
.
(Ⅲ)設(shè)出現(xiàn)頻數(shù)依次為
.同(Ⅱ)的證明,可得:
,
,
,┄,
,
,
,則
.
取得到的數(shù)列為:
下面證明滿(mǎn)足題目要求.對(duì)
,不妨令
,
① 如果或
,由于
,所以符合條件;
② 如果或
,由于
,所以也成立;
③ 如果,則可選取
;同樣的,如果
,
則可選取,使得
,且
兩兩不相等;
④ 如果,則可選取
,注意到這種情況每個(gè)數(shù)最多被選取了一次,因此也成立.綜上,對(duì)任意
,總存在
,使得
,其中
且兩兩不相等.因此
滿(mǎn)足題目要求,所以
的最小值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),拋物線
上在第一象限內(nèi)的點(diǎn)
到焦點(diǎn)的距離為
,曲線
在點(diǎn)
處的切線交
軸于點(diǎn)
,直線
經(jīng)過(guò)點(diǎn)
且垂直于
軸.
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)設(shè)不經(jīng)過(guò)點(diǎn)和
的動(dòng)直線
交曲線
于點(diǎn)
和
,交
于點(diǎn)
,若直線
,
,
的斜率依次成等差數(shù)列,試問(wèn):
是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的不等式
(其中
).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式在內(nèi)有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時(shí), 的取值范圍是( )
A. B.
C. [1,3-3] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若
,則
的值域是______;若
的值域是
,則實(shí)數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,過(guò)拋物線
上的動(dòng)點(diǎn)
(除頂點(diǎn)
外)作
的切線
交
軸于點(diǎn)
.過(guò)點(diǎn)
作直線
的垂線
(垂足為
)與直線
交于點(diǎn)
.
(Ⅰ)求焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:;
(Ⅲ)求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
(
為參數(shù))
(1)求曲線的直角坐標(biāo)方程及曲線
的極坐標(biāo)方程;
(2)當(dāng)(
)時(shí)在曲線
上對(duì)應(yīng)的點(diǎn)為
,若
的面積為
,求
點(diǎn)的極坐標(biāo),并判斷
是否在曲線
上(其中點(diǎn)
為半圓的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過(guò)點(diǎn)P(1,0)作直線AB分別交OA、OB于A、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com