分析:(1)當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1可化為an-4an-1=2n.變形為an+2n=4(an-1+2n-1),利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用“裂項(xiàng)求和”即可得出.
解答:解:(1)當(dāng)n=1時(shí),a
1=S
1=
a1-×22+,解得a
1=2.
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=
(an-×2n+1+)-(an-1-×2n+),化為
an-4an-1=2n.
∴
an+2n=4(an-1+2n-1),
又a
1+2=4,∴數(shù)列{
an+2n}是等比數(shù)列,首項(xiàng)為4,公比為4.
∴
an+2n=4n,解得
an=4n-2n.
S
n=
(4n-2n)-×2n+1+=
-2n+1+.
(2)由(1)可得x
n=
=
(-),
∴T
n=
[(1-)+(-)+…+(-)]=
(1-).
點(diǎn)評(píng):本題考查了利用“當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1”求通項(xiàng)公式、等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.