【題目】已知函數,函數
的圖像與函數
的圖像關于直線
對稱.
(1)求函數的解析式;
(2)若函數在區間
上的值域為
,求實數
的取值范圍;
(3)設函數,試用列舉法表示集合
.
科目:高中數學 來源: 題型:
【題目】孔子曰:溫故而知新.數學學科的學習也是如此.為了調查數學成績與及時復習之間的關系,某校志愿者展開了積極的調查活動:從高三年級640名學生中按系統抽樣抽取40名學生進行問卷調查,所得信息如下:
數學成績優秀(人數) | 數學成績合格(人數) | |
及時復習(人數) | 20 | 4 |
不及時復習(人數) | 10 | 6 |
(1)張軍是640名學生中的一名,他被抽中進行問卷調查的概率是多少(用分數作答);
(2)根據以上數據,運用獨立性檢驗的基本思想,研究數學成績與及時復習的相關性.
參考公式:,其中
為樣本容量
臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若存在實數
,使得
為
上的奇函數,則稱
是位差值為
的“位差奇函數”.
(1)判斷函數和
是否為位差奇函數?說明理由;
(2)若是位差值為
的位差奇函數,求
的值;
(3)若對任意屬于區間
中的
都不是位差奇函數,求實數
、
滿足的條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點是拋物線
的焦點,直線
與
相交于不同的兩點
.
(1)求的方程;
(2)若直線經過點
,求
的面積的最小值(
為坐標原點);
(3)已知點,直線
經過點
,
為線段
的中點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,如果存在實數
(
,且
不同時成立),使得
對
恒成立,則稱函數
為“
映像函數”.
(1)判斷函數是否是“
映像函數”,如果是,請求出相應的
的值,若不是,請說明理由;
(2)已知函數是定義在
上的“
映像函數”,且當
時,
.求函數
(
)的反函數;
(3)在(2)的條件下,試構造一個數列,使得當
時,
,并求
時,函數
的解析式,及
的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】半圓的直徑的兩端點為
,點
在半圓
及直徑
上運動,若將點
的縱坐標伸長到原來的2倍(橫坐標不變)得到點
,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的“直徑”,求曲線的“直徑”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】半圓的直徑的兩端點為
,點
在半圓
及直徑
上運動,若將點
的縱坐標伸長到原來的2倍(橫坐標不變)得到點
,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的“直徑”,求曲線的“直徑”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列滿足
,
,
.
(1)求證:數列為等比數列;
(2)對于大于的正整數
、
(其中
),若
、
、
三個數經適當排序后能構成等差數列,求符合條件的數組
;
(3)若數列滿足
,是否存在實數
,使得數列
是單調遞增數列?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的各項均為正數,且
,對于任意的
,均有
,
.
(1)求證:是等比數列,并求出
的通項公式;
(2)若數列中去掉
的項后,余下的項組成數列
,求
;
(3)設,數列
的前
項和為
,是否存在正整數
,使得
、
、
成等比數列,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com