【題目】已知數列{an}的各項均為正數,其前n項的和為Sn,且對任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求的值;
(2)求證:{an}為等比數列;
(3)已知數列{cn},{dn}滿足|cn|=|dn|=an,p(p≥3)是給定的正整數,數列{cn},{dn}的前p項的和分別為Tp,Rp,且Tp=Rp,求證:對任意正整數k(1≤k≤p),ck=dk.
【答案】(1)2;(2)見解析;(3)見解析.
【解析】試題分析:(1)本題采用賦值法,在已知等式中令得得出
的關系;(2)也采用賦值法,本題難點在于已知條件中的平方的處理,為此先取
和
,所得兩聯立結合(1)可得
,然后令
得
,令
得
,此兩式相除得
,因此
,即
,下面處理方法大家應該很清楚了,由此式有
,相應兩式相減可證得結論;(3)用反證法證明,由(1)
,若
,不妨設
,
,則
,
,這與已知Tp=Rp矛盾,從而
,于是
,則
,依次可證明題設結論.
試題解析:(1)由(Sm+n+S1)2=4a2na2m,得(S2+S1)2=4a,即(a2+2a1)2=4a.
因為a1>0,a2>0,所以a2+2a1=a2,即=2. 3分
證明:(2)(方法一)令m=1,n=2,得(S3+S1)2=4a2a4,即(2a1+a2+a3)2=4a2a4,
令m=n=2,得S4+S1=2a4,即2a1+a2+a3=a4.
所以a4=4a2=8a1.
又因為=2,所以a3=4a1. 6分
由(Sm+n+S1)2=4a2na2m,得(Sn+1+S1)2=4a2na2,(Sn+2+S1)2=4a2na4.
兩式相除,得=,所以==2.
即Sn+2+S1=2(Sn+1+S1),
從而Sn+3+S1=2(Sn+2+S1).
所以an+3=2an+2,故當n≥3時,{an}是公比為2的等比數列.
又因為a3=2a2=4a1,從而an=a1·2 n-1,n∈N*.
顯然,an=a1·2 n-1滿足題設,
因此{an}是首項為a1,公比為2的等比數列. 10分
(方法二)在(Sm+n+S1)2=4a2na2m中,
令m=n,得S2n+S1=2a2n. ①
令m=n+1,得S2n+1+S1=2, ②
在①中,用n+1代n得,S2n+2+S1=2a2n+2. ③
②-①,得a2n+1=2-2a2n=2(-), ④
③-②,得a2n+2=2a2n+2-2=2(-), ⑤
由④⑤得a2n+1=. ⑥ 8分
⑥代入④,得a2n+1=2a2n;⑥代入⑤得a2n+2=2a2n+1,
所以==2.又=2,
從而an=a1·2 n-1,n∈N*.
顯然,an=a1·2 n-1滿足題設,
因此{an}是首項為a1,公比為2的等比數列. 10分
(3)由(2)知,an=a1·2 n-1.
因為|cp|=|dp|=a1·2p-1,所以cp=dp或cp=-dp.
若cp=-dp,不妨設cp>0,dp<0,
則Tp≥a1·2p-1-(a1·2p-2+a1·2p-3+ +a1)=a1·2p-1-a1·(2p-1-1)=a1>0.
Rp≤-a1·2p-1+(a1·2p-2+a1·2p-3+ +a1)=-a1·2p-1+a1·(2p-1-1)=-a1<0.
這與Tp=Rp矛盾,所以cp=dp.
從而Tp-1=Rp-1.
由上證明,同理可得cp-1=dp-1.如此下去,可得cp-2=dp-2,cp-3=dp-3.,c1=d1.
即對任意正整數k(1≤k≤p),ck=dk. 16分
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P到兩點(0,-),(0,
)的距離之和等于4,設點P的軌跡為C.
(1)寫出C的方程;
(2)設直線y=kx+1與C交于A、B兩點,k為何值時?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司研究開發了一種新產品,生產這種新產品的年固定成本為150萬元,每生產千件,需另投入成本為
(萬元),
.每件產品售價為500元.該新產品在市場上供不應求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(Ⅱ)當年產量為多少千件時,該公司在這一新產品的生產中所獲利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量主要受污染物排放量及大氣擴散等因素的影響,某市環保監測站2014年10月連續10天(從左到右對應1號至10號)采集該市某地平均風速及空氣中氧化物的日均濃度數據,制成散點圖如圖所示.
(Ⅰ)同學甲從這10天中隨機抽取連續5天的一組數據,計算回歸直線方程.試求連續5天的一組數據中恰好同時包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現有30名學生,每人任取5天數據,對應計算出30個不同的回歸直線方程.已知30組數據中有包含氧化物日均濃度最值的有14組.現采用這30個回歸方程對某一天平均風速下的氧化物日均濃度進行預測,若預測值與實測值差的絕對值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據以上信息完成下列2×2聯表,并分析是否有95%以上的把握說擬合效果與選取數據是否包含氧化物日均濃度最值有關.
預測效果好 | 擬合效果不好 | 合計 | |
數據有包含最值 | 5 | ||
數據無包含最值 | 4 | ||
合計 |
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.已知點
的極坐標為
,曲線
的參數方程為
為參數).
(1)直線過
且與曲線
相切,求直線
的極坐標方程;
(2)點與點
關于
軸對稱,求曲線
上的點到點
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(2x+φ)(0<φ<2π)的圖象過點(,-2).
(1)求φ的值;
(2)若f()=
,-
<α<0,求sin(2α-
)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點,求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,真命題是( 。
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要條件
D.設 ,
為向量,則“|
?
|=|
||
|”是“
∥
”的充要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com