日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x3+x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實數a的取值范圍;
(2)設實數f(x)的兩個極值點分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設H(x)=[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數的底)的大小,并證明.
【答案】分析:(1)由已知中函數f(x)=x3+x2+(a2-3a)x-2a,可求出f'(x)的解析式,根據二次函數的圖象和性質可得對任意x∈(1,2],f'(x)>a2恒成立時,實數a的取值范圍;
(2)由(1)中f'(x)的解析式,可求出x1x2,進而判斷出①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值及函數g(a)的解析式,及g(a)的最小值;
(3)根據(2)中g(a)的解析式,我們可以求出H(x)=[g(x)-27]的解析式,構造函數F(x)=H(x)-ex,利用導數法,可判斷出F(x)在區間(0,1)上的單調性,進而判斷出當m,n∈(0,1)且m≠n時,|H(m)-H(n)|與|em-en|的大。
解答:解:(1)∵函數f(x)=x3+x2+(a2-3a)x-2a
∴函數f′(x)=x2+(a-3)x+(a2-3a)
則f′(x)-a2=x2+(a-3)x-3a=(x+a)(x-3)
若對任意x∈(1,2],f'(x)>a2恒成立,
則對任意x∈(1,2],f′(x)-a2>0恒成立
則a<-2.
(2)令f′(x)=0
則x=3或x=-a
則①x1+x2+a=3為定值;
②x12+x22+a2=2a2+9不為定值;
此時g(a)=2a2+9,當a=0時有最小值9;
③x13+x23+a3=27為定值;
(3)∵g(a)=2a2+9,
∴H(x)=[g(x)-27]=(2x2-18),
令F(x)=H(x)-ex=(2x2-18)-ex,
則F′(x)=x-ex
當x∈(0,1)時,F′(x)<0恒成立
即F(x)在區間(0,1)上為減函數
當m,n∈(0,1)且m≠n時,不妨令m>n
則F(m)-F(n)=[H(m)-em]-[H(n)-en]<0
即[H(m)-em]<[H(n)-en]
即H(m)-H(m)<em-en,
即|H(m)-H(n)|<|em-en|
點評:本題考查的知識點是利用導數求閉區間上函數的最值,函數恒成立問題,導數的運算,其中(1)的關鍵是熟練掌握二次函數的圖象和性質,(2)的關鍵是求出f(x)的兩個極值點分別為x1x2,(3)的關鍵是構造函數F(x)=H(x)-ex,并利用導數法判斷出F(x)在區間(0,1)上的單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成人精品视频 | 久久午夜夜伦鲁鲁一区二区 | 黄频免费在线观看 | 黄色在线观看免费 | 嫩草影院网站入口 | 国产suv精品一区二区33 | av在线免费观看网站 | 黄色国产一级视频 | 成人深夜视频 | 人人插人人干 | 国产精品久久久久久久久久妇女 | 久二影院 | 中文字幕在线视频第一页 | 久草视频网址 | 成人黄色免费观看 | 亚洲乱码久久久 | 日韩一区二区三区在线观看 | 热久久这里只有精品 | 亚洲成人免费 | 欧美日韩一区二区三区在线观看 | 噜噜噜天天躁狠狠躁夜夜精品 | 午夜国产羞羞视频免费网站 | 亚洲国产欧美一区二区三区久久 | 国产精品国产精品国产专区不片 | 日本免费www| 免费av电影在线观看 | 青春草在线观看 | 欧美成人一级视频 | 成年人网站免费在线观看 | 成人黄视频在线观看 | 国产精品一区人伦免视频播放 | 日韩精品专区在线影院重磅 | 热久久久久 | 99免费精品 | 国产在线中文字幕 | 青青草97| av在线免费观看网站 | 二区在线视频 | 精品一区av| 国产精品久久久久久久久久久免费看 | 久久人人国产 |