日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
一非零向量列{an}滿足a1=(x1,y1),an=(xn,yn)=(xn-1-yn-1,xn-1+yn-1)(n≥2),

(1)證明:{|an|}是等比數列;

(2)求an-1an的夾角θn(n≥2),若bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;

(3)設a1=(1,2),把a1,a2,…,an,…中所有與a1共線的向量按照原來的順序排成一列,記為b1,b2,…,bn,…,令=b1+b2+b3+…+bn(O為坐標原點),

    求點列{Bn}的極限點B的坐標(注:若點Bn的坐標為(tn,sn)且tn=t,sn=s,則點B(t,s)為點列{Bn}的極限點).

解:(1)|an|

=

=|an-1|對任意n≥2恒成立,即|an|=|an-1|,故{|an|}是首項為|a1|,公比為的等比數列;

(2)an-1·an=(xn-1,yn-1(xn-1-yn-1,xn-1+yn-1)=(xn-12+yn-12)=|an-1|2,cos〈an-1,an〉=,將|an|=|an-1|,an-1·an=|an-1|2代入上式可得cos〈an-1,an〉=,所以an-1an的夾角為θn=bn=2nθn-1=-1,則{bn}為等差數列,Sn=×n=(1+n)n-n=(n2+n)-n.

(3)∵a1=(x1,y1),an=(xn-1-yn-1,xn-1+yn-1),∴a2=(x1-y1,x1+y1),

a3=(-y1,x1),a4=(-x1-y1,x1-y1),a5=-(x1·y1),類推得a1a5a9…,所以b1=a1,b2=a5,…bn=a4n-3(也可用數學歸納法證明),bn=a4n-3=(-14)n-1(x1·y1),設=(tn,sn),則tn=[1+(-)+(-)2+…+(-)n-1]x1=[1-(-)n],tn=,Sn=[1+(-)+(-)2+…+(-)n-1]y1=[1-(-)n],sn=,所以,極限點B的坐標為().

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知一非零向量列{
an
}
滿足:
a1
=(1,1)
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)  (n≥2)

(1)證明:{|
an
|}
是等比數列;
(2)設θn=?
an
-1
,
an
>  (n≥2)
,bn=2nθn-1,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一非零向量列{an}滿足:a1=(1,2),an=(xnyn)=(-
1
2
yn-1,
1
2
xn-1)(n≥2)

(1)證明:{|an|}是等比數列;
(2)求向量an-1與an的夾角θ(n≥2);
(3)把向量a1,a2,…,an…中所有與a1共線的向量按原來的前后順序排成一列,記為b1,b2,…,bn,…,其中b1=a1,若
OBn
=b1+b2+…+bn=(Tn,Sn)
(O是坐標原點),求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•成都模擬)已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
12
(xn-1-yn-1xn-1+yn-1)(n≥2)

(1)證明:{|an|}是等比數列;
(2)設θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;
(3)設cn=|an|log2|an|,問數列{cn}中是否存在最小項?若存在,求出最小項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:成都一模 題型:解答題

已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)(n≥2)

(1)證明:{|an|}是等比數列;
(2)設θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;
(3)設cn=|an|log2|an|,問數列{cn}中是否存在最小項?若存在,求出最小項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

一非零向量列{an}滿足:a1=(x1,y1),an=(xn,yn)=(xn-1-yn-1,xn-1+yn-1)(n≥2),

(1)證明:{|an|}是等比數列;

(2)求an-1an的夾角θn(n≥2),若bn=2nθn-1,Sn=b1+b2+…bn,求Sn;

(3)設a1=(1,2),把a1a2,…,an,…中所有與a1共線的向量按照原來的順序排成一列,記為b1,b2,…,bn,…,令Obn=b1+b2+b3+…+bn(O為坐標原點),求點列{Bn}的極限點B的坐標(注:若點Bn的坐標為(tn,sn)且tn=t,sn=s,則點B(t,s)為點列{Bn}的極限點).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: caoporn国产精品免费公开 | 国产剧情一区二区 | 国产青青 | 精品久久久久久久久久久久久久 | 午夜免费看片 | 日韩在线精品强乱中文字幕 | 日本成人黄色网址 | 成人不卡视频 | 伊人午夜 | 日韩久久一区二区 | 久久精品中文字幕一区 | 成人高清在线 | 欧美午夜一区二区三区免费大片 | 91免费在线| 欧美一级在线观看 | 欧美在线二区 | 91久久精品久久国产性色也91 | 国产99久久精品 | 国产在线一区二区三区四区 | av久久| 男女羞羞在线观看 | 欧美精品一区二区三区四区 | 涩涩视频在线观看免费 | 免费观看欧美一级 | 免费成人av在线 | 色欧美综合 | 黄色一级电影 | 午夜免费视频网站 | 午夜精品久久久久久久久久蜜桃 | 四虎新网站 | 操夜夜| 国产欧美精品一区二区三区四区 | 夜本色| 欧美色影院 | 二区视频 | 黄色毛片网站 | 一级在线毛片 | 一区二区三区在线免费观看 | 中文字幕av第一页 | 亚洲一级片在线免费观看 | 午夜影院a |