【題目】已知雙曲線的左,右焦點(diǎn)分別為
,若雙曲線上存在點(diǎn)
,使
,則該雙曲線的離心率
范圍為( )
A. (1,1) B. (1,1
) C. (1,1
] D. (1,1
]
【答案】A
【解析】由題意,點(diǎn) 不是雙曲線的頂點(diǎn),否則
無意義,在
中,由正弦定理得
,又
,即
,
在雙曲線的右支上,由雙曲線的定義,得
,即
,由雙曲線的幾何性質(zhì),知
,即
,
,解得
,又
,所以雙曲線離心率的范圍是
,故選A.
【方法點(diǎn)晴】本題主要考查正弦定理以及利用雙曲線的簡單性質(zhì)求雙曲線的離心率范圍,屬于難題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將 用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于
的不等式,從而求出
的范圍.焦半徑構(gòu)造出關(guān)于
的不等式,最后解出
的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交管部門為宣傳新交規(guī)舉辦交通知識問答活動,隨機(jī)對該市歲的人群抽樣了
人,回答問題統(tǒng)計結(jié)果如圖表所示:
分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 | |
第 | |||
第 | |||
第 | |||
第 | |||
第 |
(1)分別求出,
,
,
的值;
(2)從第,
,
組回答正確的人中用分層抽樣方法抽取
人,則第
,
,
組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的人中隨機(jī)抽取
人頒發(fā)幸運(yùn)獎,求:所抽取的
人中至少有一個第
組的人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直角坐標(biāo)系中動點(diǎn),參數(shù)
,在以原點(diǎn)為極點(diǎn)、
軸正半軸為極軸所建立的極坐標(biāo)系中,動點(diǎn)
在曲線
:
上.
(1)求點(diǎn)的軌跡
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若動點(diǎn)的軌跡
和曲線
有兩個公共點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓(
)的左、右焦點(diǎn)分別為
,
,過
作垂直于
軸的直線
與橢圓
在第一象限交于點(diǎn)
,若
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ),
是橢圓
上位于直線
兩側(cè)的兩點(diǎn).若直線
過點(diǎn)
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼模鏁溤淼膬?nèi)容是:夾在兩個平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長為
),四棱錐的底面是有一個角為
的菱形(邊長為
),圓錐的體積為
,現(xiàn)用平行于這兩個平行平面的平面去截三個幾何體,如果截得的三個截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),
軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,
兩點(diǎn)的極坐標(biāo)分別為.
(1)求圓的普通方程和直線
的直角坐標(biāo)方程;
(2)點(diǎn)是圓
上任一點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)
與橢圓
:
的一個焦點(diǎn)重合,點(diǎn)
在拋物線上,過焦點(diǎn)
的直線
交拋物線于
、
兩點(diǎn).
(Ⅰ)求拋物線的方程以及
的值;
(Ⅱ)記拋物線的準(zhǔn)線與
軸交于點(diǎn)
,試問是否存在常數(shù)
,使得
且
都成立?若存在,求出實(shí)數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為:
,在平面直角坐標(biāo)系
中,直線
的方程為
(
為參數(shù)).
(1)求曲線和直線
的直角坐標(biāo)方程;
(2)已知直線交曲線
于
,
兩點(diǎn),求
,
兩點(diǎn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)
.
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時,對任意
,不等式
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com