【題目】函數的定義域為
,滿足
,且當
時,
.若對任意
,都有
,則
的取值范圍是( )
A.B.
C.
D.
【答案】B
【解析】
因為f(x+1)=2f(x),∴f(x)=f(x+1),分段求解析式,結合圖象可得.
因為f(x+1)=2f(x),∴f(x)=f(x+1),
∵x∈(0,1]時,f(x)=﹣x∈[,0),
∴x∈(﹣1,0]時,x+1∈(0,1],f(x)=f(x+1)=﹣
(x+1)∈[
,0);
∴x∈(﹣2,﹣1]時,x+1∈(﹣1,0],f(x)=f(x+1)=﹣
(x+2)∈[﹣
,0),
∴x∈(﹣3,﹣2]時,x+1∈(﹣2,﹣1],f(x)=f(x+1)=﹣
(x+3)∈[﹣
,0),
作出函數圖像:
∴x∈(﹣2,﹣1]時, f(x)=﹣(x+2)=
,解得x=
,
∴由圖可知:若對任意x∈(﹣∞,m],都有f(x),則m
.
故選:B.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,求曲線
在點
處的切線方程;
(2)若函數在其定義域內為增函數,求
的取值范圍;
(3)在(2)的條件下,設函數,若在
上至少存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,已知曲線
的參數方程為
(
為參數)。曲線
的參數方程為
(
為參數),在以坐標原點為極點,
軸正半軸為極軸建立極坐標系.
(1)求曲線,
的極坐標方程;
(2)在極坐標系中,射線與曲線
交于點
,射線
與曲線
交于點
,求
的面積(其中
為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.
(1)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下列聯表:能否據此判斷有97.5%的把握認為“禮讓斑馬線”行為與駕齡有關?
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
(2)下圖是某市一主干路口監控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為的折線圖:
請結合圖形和所給數據求違章駕駛員人數y與月份x之間的回歸直線方程,并預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數.
附注:參考數據:,
.
參考公式:,
,
(其中
)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足
.
(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的方程為
,其焦點為
,
為過焦點
的拋物線
的弦,過
分別作拋物線的切線
,
,設
,
相交于點
.
(1)求的值;
(2)如果圓的方程為
,且點
在圓
內部,設直線
與
相交于
,
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知二次函數(
、
、
均為實常數,
)的最小值是0,函數
的零點是
和
,函數
滿足
,其中
,為常數.
(1)已知實數、
滿足、
,且
,試比較
與
的大小關系,并說明理由;
(2)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產一批零件,為了解這批零件的質量狀況,檢驗員從這批產品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質量指標值.由檢測結果得到如下頻率分布直方圖.
分組 | 頻數 | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中的值;
(2)根據質量標準規定:零件重量小于47或大于53為不合格品,重量在區間和
內為合格品,重量在區間
內為優質品.已知每件產品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共
件
,現有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進行回收處理,其余零件均按150元/件售出;方案二:繼續對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優質品按200元/件售出.僅從獲得利潤大的角度考慮,該生產商應選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分18分,第(1)小題4分,第(2)小題5分,第(3)小題9分)
設函數的定義域為
,值域為
,如果存在函數
,使得函數
的值域仍是
,那么稱
是函數
的一個等值域變換.
(1)判斷下列函數是不是函數
的一個等值域變換?說明你的理由;
,
;
,
.
(2)設函數的定義域為
,值域為
,函數
的定義域為
,值域為
,那么“
”是否為“
是
的一個等值域變換”的一個必要條件?請說明理由;
(3)設的定義域為
,已知
是
的一個等值域變換,且函數
的定義域為
,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com