日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f(x)=alnx+
1
2
x2
,若對任意兩個不等的正實數x1,x2都有
f(x1)-f(x2)
x1-x2
>0成立,則實數a的取值范圍是(  )
分析:先將條件“對任意兩個不等的正實數x1,x2,都有
f(x1)-f(x2)
x1-x2
>0恒成立”轉換成當x>0時,f'(x)>0恒成立,然后利用參變量分離的方法求出a的范圍即可.
解答:解:對任意兩個不等的正實數x1,x2,都有
f(x1)-f(x2)
x1-x2
>0恒成立
則當x>0時,f'(x)>0恒成立
f'(x)=
a
x
+x>0在(0,+∞)上恒成立
則a>(-x2max
而-x2<0,則a≥0
故選A.
點評:本題主要考查了導數的幾何意義,以及函數恒成立問題,同時考查了轉化與劃歸的數學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f′(x)是f(x)的導函數,f(x)=ln(x+1)+m-2f′(1),m∈R,且函數f(x)的圖象過點(0,-2).
(1)求函數y=f(x)的表達式;
(2)設g(x)=
1x
+aln(x+1)-2a
在點(1,g(1))處的切線與y軸垂直,求g(x)的極大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=aln(x-1),g(x)=x2+bx,F(x)=f(x+1)-g(x),其中a,b∈R.
(Ⅰ)若y=f(x)與y=g(x)的圖象在交點(2,k)處的切線互相垂直,求a,b的值;
(Ⅱ)若x=2是函數F(x)的一個極值點,x0和1是F(x)的兩個零點,且x0∈(n,n+1)n∈N,求n;
(Ⅲ)當b=a-2時,若x1,x2是F(x)的兩個極值點,當|x1-x2|>1時,求證:|F(x1)-F(x)|>3-4ln2.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數y=f(x)圖象上三點,且2x2=x1+x3,當a>0時,△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數 f(x)=x2+2lnx+aln(1+x2).
(I)若a=-
92
求f(x)的極值;
(II)已知f(x)有兩個極值點x1,x2,且x1<x2
(i) 求a的取值范圍
(ii)求證:f(x1)<1-4ln2
(III) a=0時,求證[f'(x)]n-2n-1f'(xn)≥2n(2n-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=[3ln(x+2)-ln(x-2)]

    (Ⅰ)求x為何值時,f(x)在[3,7]上取得最大值;

(Ⅱ)設F(x)=aln(x-1)-f(x),若F(x)是單調遞增函數,求a的取值范圍。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲电影一区 | 美日韩免费视频 | 艹逼视频在线免费观看 | 欧美日韩不卡 | 91久久夜色精品国产网站 | 日韩精品久久一区二区三区 | 在线视频第一页 | 久久久免费观看视频 | 欧美日本韩国一区二区 | 国产精品美女久久久久久久网站 | 国产欧美精品一区二区三区四区 | 午夜精品久久久久99蜜 | 日韩精品一区二区三区中文在线 | 久久精品国产v日韩v亚洲 | av一二三区 | 性国产xxxx乳高跟 | 成人av教育 | 久久精品国产一区二区电影 | 久久久久综合狠狠综合日本高清 | 久久久久一区 | 亚洲国产天堂久久综合 | 国产精品一区网站 | 国产精品久久久久久久久久久久久 | 免费中文字幕 | 天天操天天碰 | 成人av免费观看 | 国产日韩一区二区三区 | 国产欧美精品在线 | 国产精品久久久精品 | 狠狠爱www人成狠狠爱综合网 | 一级欧美 | 精品成人久久 | 午夜免费福利视频 | 国产精品污www一区二区三区 | 日本大片在线观看 | www.av视频 | 看毛片的网址 | www.超碰在线 | 久久99精品视频在线观看 | 日韩精品久 | 91久久国产综合久久91精品网站 |