【題目】若函數(shù)在
處取得極大值或極小值,則稱
為函數(shù)
的極值點(diǎn).已知函數(shù)
.
(1)當(dāng)時(shí),求
的極值;
(2)若在區(qū)間
上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍.
【答案】(1)極小值;(2)
.
【解析】
(1)求出,令
求出方程的解,從而探究
隨
的變化情況,即可求出極值.
(2)求出,令
,分
,
,
三種情況進(jìn)行討論,結(jié)合零點(diǎn)存在定理求出實(shí)數(shù)
的取值范圍.
解:(1)當(dāng)時(shí),
的定義域?yàn)?/span>
,
,
令,解得
,則
隨
的變化如下表,
|
| ||
|
|
|
|
|
|
|
故在
上是減函數(shù),在
上是增函數(shù);
故在
時(shí)取得極小值
;
(2)函數(shù)的定義域?yàn)?/span>
,
,
令,則
,
當(dāng)時(shí),
在
恒成立,故
在
上是增函數(shù),
而,故當(dāng)
時(shí),
恒成立,
故在區(qū)間
上單調(diào)遞增,故
在區(qū)間
上沒有極值點(diǎn);
當(dāng)時(shí),由(1)知,
在區(qū)間
上沒有極值點(diǎn);
當(dāng)時(shí),令
,解得
或
(舍去);
故在
上是增函數(shù),在
上是減函數(shù),
①當(dāng),即
時(shí),
在
上有且只有一個(gè)零點(diǎn),且在該零點(diǎn)兩側(cè)異號(hào),
②令得
,不符合題意;
③令得
,所以
,
而,又
,
所以在
上有且只有一個(gè)零點(diǎn),且在該零點(diǎn)兩側(cè)異號(hào),
綜上所述,實(shí)數(shù)的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,以橢圓的頂點(diǎn)為頂點(diǎn)的四邊形的面積為
,且該四邊形內(nèi)切圓的半徑為
.
(1)求橢圓的方程;
(2)設(shè)是過橢圓中心的任意一條弦,直線
是線段
的垂直平分線,若
是直線
與橢圓的一個(gè)交點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機(jī)關(guān)工作人員去某街道3所不同的學(xué)校開展駐點(diǎn)服務(wù),每個(gè)學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),
表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:
表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),與
(
均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次
關(guān)于活動(dòng)推出天數(shù)
的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立關(guān)于
的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次.
(3)推廣期結(jié)束后,為更好的服務(wù)乘客,車隊(duì)隨機(jī)調(diào)查了100人次的乘車支付方式,得到如下結(jié)果:
表2
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
人次 | 10 | 60 | 30 |
已知該線路公交車票價(jià)2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)調(diào)査結(jié)果發(fā)現(xiàn):使用掃碼支付的乘客中有5名乘客享受7折優(yōu)惠,有10名乘客享受8折優(yōu)惠,有15名乘客享受9折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有1萬人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),試估計(jì)該車隊(duì)一輛車一年的總收入.
參考數(shù)據(jù):
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中.
參考公式:
對(duì)于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計(jì)公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且橢圓
的右頂點(diǎn)到直線
的距離為3.
(1)求橢圓的方程;
(2)過點(diǎn)的直線
與橢圓
交于
,
兩點(diǎn),求
的面積的最大值(
為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在
上的奇函數(shù),且函數(shù)
為偶函數(shù),當(dāng)
時(shí),
,若
有三個(gè)零點(diǎn),則實(shí)數(shù)
的取值集合是( )
A.,
B.
,
C.,
D.
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國(guó)”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1組,第2組
,第3組
,第4組
,第5組
,第6組
,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程
.
(1)若曲線與
只有一個(gè)公共點(diǎn),求
的值;
(2)為曲線
上的兩點(diǎn),且
,求
的面積最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com