日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

(1)證明:當a>1時,不等式a3數學公式>a2數學公式成立.
(2)要使上述不等式a3數學公式>a2數學公式成立,能否將條件“a>1”適當放寬?若能,請放寬條件并簡述理由;若不能,也請說明理由.
(3)請你根據(1)、(2)的證明,試寫出一個類似的更為一般的結論,且給予證明.

解:(1)證明:,∵a>1,∴>0,
∴原不等式成立.
(2)∵a-1與a5-1同號對任何a>0且a≠1 恒成立,∴上述不等式的條件可放寬為a>0且a≠1.
(3)根據(1)(2)的證明,可推知:若a>0且a≠1,m>n>0,則有
證:左式-右式=
若a>1,則由m>n>0 可得 am-n-1>0,am+n-1>0∴不等式成立.
若0<a<1,則由m>n>0 可得 0<am-n<1,0<am+n<1,∴不等式成立.
分析:(1)用作差比較法證明不等式,把差化為因式積的形式,判斷符號,得出結論.
(2)由于a-1與a5-1同號,對任何a>0且a≠1 恒成立,故上述不等式的條件可放寬為a>0且a≠1.
(3)左式-右式等于,根據m>n>0,分a>1 和0<a<1 兩種情況討論.
點評:本題考查不等式性質的應用,用比較法證明不等式,體現了分類討論的數學思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x+
ax
的定義域為(0,2](a為常數).
(1)證明:當a≥8時,函數y=f(x)在定義域上是減函數;
(2)求函數y=f(x)在定義域上的最大值及最小值,并求出函數取最值時x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c和一次函數g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當a=3、b=2時函數f(x)與g(x)的圖象交于不同的兩點A,B.
(Ⅱ)若函數F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=1-e-x-
x
ax+1
,(a∈R).
(1)若a=1,證明:當x>-1時,f(x)≥0;
(2)若f(x)≤0在[0,+∞)上恒成立,求實數a的取值范圍;
(3)設n∈N且n>1求證:(n-1)!≥e2n-2-
n
k=2
4
k

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=alnx-x2
(1)當a=2時,求函數y=f(x)在[
12
,2]
上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在區讓(0,3)上不單調,求a的取值范圍;
(3)當a=2時,函數h(x)=f(x)-mx的圖象與x軸交于兩點A(x1,0),B(x2,0),且0<x1<x2,又y=h′(x)是y=h(x)的導函數.若正常數α,β滿足條件α+β=1,β≥α.證明h′(αx1+βx2)<0.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人片在线播放 | 国产日韩欧美精品一区二区 | 九九99久久 | 欧美在线视频一区二区 | 午夜视频在线观看免费视频 | 日精品 | 中文一区| 日韩三级电影网 | 国产精品视频免费观看 | 国产欧美一区二区精品婷 | 国产精品久久久久免费视频 | 99成人精品 | 亚洲aaaaaa特级 | 在线观看黄色av网站 | 最新亚洲黄色网址 | 国产成人8x视频一区二区 | 国产精品2| 久久综合91| 又爽又大又黄a级毛片在线视频 | 亚洲视频一区二区 | 亚洲精品三级 | 中文字幕在线看 | 一级欧美一级日韩片 | 中文字幕免费视频观看 | 爱爱免费视频网站 | 色欧美在线| 久久视频一区二区 | 澳门久久| 国产韩国精品一区二区三区 | 国产99久久 | 三级日韩 | 国产精品久久久久久久久久免费看 | 日本在线观看www | 欧美日韩国产精品久久久久 | 亚洲精品视频一区 | 国产亚洲精品久久久久动 | www.99热这里只有精品 | 国产一区免费视频 | 国产精品一区二区免费在线观看 | 国产精选久久 | 欧美成人免费在线视频 |