【題目】已知橢圓(
)的左右焦點分別為
、
,離心率
.過
的直線交橢圓于
、
兩點,三角形
的周長為
.
(1)求橢圓的方程;
(2)若弦,求直線
的方程.
【答案】(1);(2)
.
【解析】試題分析:(1)利用橢圓的離心率以及的周長為8,求出a,c,b,即可得到橢圓的方程,
(2)求出直線方程與橢圓方程聯立,點的坐標為
,
的坐標為
求出A,B坐標,然后求解三角形的面積即可.
試題解析:
(1)三角形的周長
,所以
.
離心率,所以
,則
.
橢圓的方程為:
(2)設點的坐標為
,
的坐標為
,
的斜率為
(
顯然存在)
.
.
點睛: 本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 一枚骰子擲一次得到2點的概率為,這說明一枚骰子擲6次會出現一次2點
B. 某地氣象臺預報說,明天本地降水的概率為70%,這說明明天本地有70%的區域下雨,30%的區域不下雨
C. 某中學高二年級有12個班,要從中選2個班參加活動,由于某種原因,一班必須參加,另外再從二至十二班中選一個班,有人提議用如下方法:擲兩枚骰子得到的點數是幾,就選幾班,這是很公平的方法
D. 在一場乒乓球賽前,裁判一般用擲硬幣猜正反面來決定誰先打球,這應該說是公平的
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數f(x)=(x+l)lnx﹣ax+a (a為正實數,且為常數)
(1)若f(x)在(0,+∞)上單調遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】全網傳播的融合指數是衡量電視媒體在中國網民中影響力的綜合指標,根據相關報道提供的全網傳播2017年某全國性大型活動的“省級衛視新聞臺”融合指數的數據,對名列前20名的“省級衛視新聞臺”的融合指數進行分組統計,結果如表所示.
組號 | 分組 | 頻數 |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
(1)根據分組統計表求這20家“省級衛視新聞臺”的融合指數的平均數;
(2)現從融合指數在和
內的“省級衛視新聞臺”中隨機抽取2家進行調研,求至少有1家的融合指數在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了實現綠色發展,避免浪費能源,耨市政府計劃對居民用電采用階梯收費的方法.為此,相關部門在該市隨機調查了20戶居民六月份的用電量(單位:)和家庭收入(單位:萬元),以了解這個城市家庭用電量的情況.
用電量數據如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.
對應的家庭收入數據如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.
(1)根據國家發改委的指示精神,該市計劃實施3階階梯電價,使75%的用戶在第一檔,電價為0.56元/;
的用戶在第二檔,電價為0.61元/
;
的用戶在第三檔,電價為0.86元/
;試求出居民用電費用
與用電量
間的函數關系式;
(2)以家庭收入為橫坐標,電量
為縱坐標作出散點圖(如圖),求
關于
的回歸直線方程(回歸直線方程的系數四舍五入保留整數)
;
(3)小明家的月收入7000元,按上述關系,估計小明家月支出電費多少元?
參考數據:,
,
,
,
.
參考公式:一組相關數據的回歸直線方程
的斜率和截距的最小二乘法估計分別為.
,
,其中
為樣本均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為
的橢圓
的一個焦點為圓
:
的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓
上一點,過
作兩條斜率之積為
的直線
,
,當直線
,
都與圓
相切時,求
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為 1,
為
的中點,
為線段
上的動點,過點A、P、Q的平面截該正方體所得的截面記為
.則下列命題正確的是__________(寫出所有正確命題的編號).
①當時,
為四邊形;②當
時,
為等腰梯形;③當
時,
為六邊形;④當
時,
的面積為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,底面
為正三角形,
底面
,且
,
是
的中點.
(1)求證: 平面
;
(2)求證:平面平面
;
(3)在側棱上是否存在一點
,使得三棱錐
的體積是
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點M是圓心為E的圓上的動點,點
,線段MF的垂直平分線交EM于點P.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過原點O作直線交(Ⅰ)中軌跡C于點A、B,點D滿足,試求四邊形AFBD的面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com