日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2012•藍山縣模擬)如圖,已知BC是半徑為1的半圓O的直徑,A是半圓周上不同于B,C的點,F為
AC
的中點.梯形ACDE中,DE∥AC,且AC=2DE,平面ACDE⊥平面ABC.求證:
(1)平面ABE⊥平面ACDE;
(2)平面OFD∥平面BAE.
分析:(1)在半圓中,AB⊥AC,而平面ACDE⊥平面ABC,且交線為AC,故由兩平面垂直的性質定理可知:AB⊥平面ACDE,由兩平面垂直的判定定義可知:平面ABE⊥平面ACDE;
(2)設OF∩AC=M,連接DM,OA,由F為
AC
的中點,得M為AC的中點,所以DE∥
1
2
AC,得四邊形AMDE為平行四邊形,從而DM∥AE,DM∥平面ABE;由OM∥AB得,OM∥平面ABE;由兩個平面平行的判定定理,可知平面OFD∥平面BAE.
解答:證明:(1)∵BC是半圓O的直徑,A是半圓周上不同于B,C的點AC
∴∠BAC=90°,∴AC⊥AB
∵平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,AB?平面ABC
∴由兩個平面垂直的性質得,AB⊥平面ACDE
∵AB?平面ABE
∴平面ABE⊥平面ACDE.
(2)如圖,設OF∩AC=M,連接DM,OA
∵F為
AC
的中點
∴M為AC的中點.
∵AC=2DE,DE∥AC
∴DE∥AM,DE=AM
∴四邊形AMDE為平行四邊形.
∴DM∥AE
∵DM?平面ABE,AE?平面ABE
∴DM∥平面ABE
∵O為BC中點
∴OM為三角形ABC的中位線
∴OM∥AB
∵OM?平面ABE,AB?平面ABE
∴OM∥平面ABE
∵OM?平面OFD,DM?平面OFD,OM∩DM=M
∴由兩個平面平行的判定定理可知,平面OFD∥平面ABE.
點評:本題主要考查了兩個平面垂直的性質定理及判定定理、兩個平面平行的判定定理,體現了線線、線面、面面之間關系的相互轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•藍山縣模擬)已知m是一個給定的正整數,如果兩個整數a,b被m除得的余數相同,則稱a與b對模m同余,記作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),則r可以為(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本视频中文字幕 | 99精品不卡| 毛片久久久 | 成人午夜免费视频 | 免费看黄色的网址 | 国产精品一区二区三 | 国产高潮好爽受不了了夜色 | 天堂资源最新在线 | 欧美麻豆 | 色视频网站免费看 | 国产欧美一区二区三区鸳鸯浴 | 日韩av福利 | 日韩影音| 亚洲97色| 婷婷国产成人精品视频 | 成人精品鲁一区一区二区 | 特级黄一级播放 | 在线观看91 | 极品美女av在线 | 日韩一二三区在线观看 | 一区二区三区日韩 | 日本在线观看网站 | 日韩中文字幕免费 | 福利91| 免费黄色毛片 | 精品成人一区二区 | 欧美一区2区三区4区公司二百 | 天天爽夜夜春 | 成人乱淫av日日摸夜夜爽节目 | 日韩一区二区在线播放 | 日韩精品视频一区二区三区 | 精品国产91乱码一区二区三区 | 成人一区在线观看 | 米奇av| 国产精品日产欧美久久久久 | 日韩一二三区视频 | 日韩欧美三区 | 日韩色av | 国产精品自拍视频 | 国产黄色av | 国产精品视频资源 |