2.A解析:由知函數在
上有零點,又因為函數在(0,+
)上是減函數,所以函數y=f(x) 在(0,+
)上有且只有一個零點不妨設為
,則
,又因為函數是偶函數,所以
=0并且函數在(0,+
)上是減函數,因此-
是(-
,0)上的唯一零點,所以函數共有兩個零點
下列敘述中,是隨機變量的有( )
①某工廠加工的零件,實際尺寸與規定尺寸之差;②標準狀態下,水沸騰的溫度;③某大橋一天經過的車輛數;④向平面上投擲一點,此點坐標.
A.②③ B.①② C.①③④ D.①③
科目:高中數學 來源: 題型:
π |
6 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年聊城市四模理) (12分) 已知M、N兩點的坐標分別是M(1+cos2x,1),N(1,sin2x+a)(x,
是常數),令
是坐標原點).
(1)求函數的解析式,并求函數
在[0,π]上的單調遞增區間;
(2)當,求a的值,并說明此時
的圖象可由函數
的圖象經過怎樣的平移和伸縮變換而得到.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知M、N兩點的坐標分別是是常數
,令
是坐標原點
.
(Ⅰ)求函數的解析式,并求函數
在
上的單調遞增區間;
(Ⅱ)當時,
的最大值為
,求a的值,并說明此時
的圖象可由函數
的圖象經過怎樣的平移和伸縮變換而得到?
查看答案和解析>>
科目:高中數學 來源:2013屆江西省高二下學期期中考試理科數學試卷(解析版) 題型:解答題
已知
(1)求函數在
上的最小值
(2)對一切的恒成立,求實數a的取值范圍
(3)證明對一切,都有
成立
【解析】第一問中利用
當
時,
在
單調遞減,在
單調遞增
,當
,即
時,
,
第二問中,,則
設
,
則,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)當
時,
在
單調遞減,在
單調遞增
,當
,即
時,
,
…………4分
(2),則
設
,
則,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com