【題目】設拋物線的焦點為
,過點
的動直線交拋物線于不同兩點
,線段
中點為
,射線
與拋物線交于點
.
(1)求點的軌跡方程;
(2)求面積的最小值.
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”; 丁說:“
作品獲得一等獎”.
若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )
A. 作品 B.
作品 C.
作品 D.
作品
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】德國數學家科拉茨年提出了一個著名的猜想:任給一個正整數
,如果
是偶數,就將它減半(即
);如果
是奇數,則將它乘
加
(即
),不斷重復這樣的運算,經過有限步后,一定可以得到
.對于科拉茨猜想,目前誰也不能證明,也不能否定.現在請你研究:如果對正整數
(首項)按照上述規則施行變換后的第
項為
(注:
可以多次出現),則
的所有不同值的個數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓+
=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2
,離心率為
.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐與三棱錐
中,
和
都是邊長為2的等邊三角形,
分別為
的中點,
,
.
(Ⅰ)試在平面內作一條直線
,當
時,均有
平面
(作出直線
并證明);
(Ⅱ)求兩棱錐體積之和的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com