分析 推導出{an+1}是首項為3,公比為3的等比數列,從而得bn=$lo{g}_{3}{3}^{n}$=n,由此能求出b1+b2+b3+…+b100.
解答 解:∵數列{an}的首項a1=2,且${a_{n+1}}=3{a_n}+2({n∈{N^*}})$,
∴an+1+1=3(an+1),a1+1=3,
∴{an+1}是首項為3,公比為3的等比數列,
∴${a}_{n}+1={3}^{n}$,
∴bn=log3(an+1)=$lo{g}_{3}{3}^{n}$=n,
∴b1+b2+b3+…+b100=1+2+3+…+100=$\frac{100(100+1)}{2}$=5050.
故答案為:5050.
點評 本題考查數列的前100項和的求法,是中檔題,解題時要認真審題,注意等比數列、等差數列的性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | $({-∞,\frac{1}{e}})$ | D. | $({\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-2,-1,0} | B. | {-2,-1,0,1} | C. | {-2,-1,0,1,2} | D. | {-2,-1,0,1,2,3} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com