日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax+lnx,x∈(1,e),且f(x)有極值.
(1)求實數a的取值范圍;
(2)求函數f(x)的值域;
(3)函數g(x)=x3-x-2,證明:?x1∈(1,e),?x∈(1,e),使得g(x)=f(x1)成立.
【答案】分析:(1)由f(x)=ax+lnx求導,再由f(x)有極值知f′(x)=0解,且在兩側導函數正負相異求解.
(2)由(Ⅰ)可知f(x)的極大值為,再求得端點值f(1)=a,f(e)=ae+1,比較后取最小值和最大值,從而求得值域.
(3)證明:由:?x1∈(1,e),?x∈(1,e),使得g(x)=f(x1)f(x1)即研究:f(x)的值域是g(x)的值域的子集,所以分別求得兩函數的值域即可.
解答:解:(1)由f(x)=ax+lnx求導可得:.(2分)
=0,可得
∵x∈(1,e),∴(3分)
又因為x∈(1,e)

所以,f(x)有極值所以,實數a的取值范圍為.(4分)
(2)由(Ⅰ)可知f(x)的極大值為(6分)
又∵f(1)=a,f(e)=ae+1
由a≥ae+1,解得又∵
∴當時,
函數f(x)的值域為(ae+1,-1+ln()](8分)
時,
函數f(x)的值域為(a,-1+ln()].(10分)
(3)證明:由g(x)=x3-x-2求導可得g'(x)=3x2-1(11分)
令g'(x)=3x2-1=0,解得
令g'(x)=3x2-1>0,解得
又∵
∴g(x)在(1,e)上為單調遞增函數(12分)
∵g(1)=-2,g(e)=e3-e-2
∴g(x)在x∈(1,e)的值域為(-2,e3-e-2)(14分)

-2<ae+1,-2<a
,

∴?x1∈(1,e),?x∈(1,e),使得g(x)=f(x1)成立.(16分)
點評:本題主要考查用導數來研究函數的單調性,極值,最值等問題,以及集合思想的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久青草婷婷精品综合日韩 | 欧美激情自拍偷拍 | 国产精品色在线网站 | 欧美午夜一区二区三区免费大片 | 色黄视频在线观看 | 国产日韩欧美高清 | 久久午夜夜伦鲁鲁一区二区 | 日本中文字幕电影 | h黄动漫日本www免费视频网站 | av网站免费 | 日韩欧美一区二区三区久久婷婷 | 米奇av | 亚洲欧美中文日韩在线v日本 | 精品人人 | 高清av网址 | 在线播放91 | 一区二区中文 | 成人精品网 | 天天干天天操天天爽 | 亚洲欧美一区二区三区久久 | 亚洲国产91| 国产精品毛片一区二区 | 韩日电影在线观看 | 亚洲高清不卡视频 | 国产成人免费视频网站视频社区 | 不卡二区 | 91久久国产综合久久 | www.久久| 久久99国产精品久久99大师 | 亚洲v日韩v综合v精品v | 国产欧美综合一区二区三区 | 欧洲精品一区二区 | 日本不卡中文字幕 | 2018天天操夜夜操 | 国产日韩中文字幕 | 亚洲这里只有精品 | 97久久精品人人做人人爽50路 | 黄色在线免费观看视频 | 亚洲v欧美 | 亚洲精选久久 | 中文字幕日韩一区二区不卡 |