【題目】如圖,在三棱錐中,
,
底面
,
,且
.
(1)若為
上一點,且
,證明:平面
平面
.
(2)若為棱
上一點,且
平面
,求三棱錐
的體積.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x﹣a)2+(2﹣x+a)2 , x∈[﹣1,1].
(1)若設t=2x﹣2﹣x , 求出t的取值范圍(只需直接寫出結果,不需論證過程);并把f(x)表示為t的函數g(t);
(2)求f(x)的最小值;
(3)關于x的方程f(x)=2a2有解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為常數
(1)當在
處取得極值時,若關于x的方程
在
上恰有兩個不相等的實數根,求實數b的取值范圍.
(2)若對任意的,總存在
,使不等式
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=ax3﹣3x+1 對于x∈[﹣1,1]總有f(x)≥0成立,則a 的取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.{4}
D.[2,4]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,∠ABC=90°,SA⊥平面ABC,點A在SB和SC上的射影分別為E、D.
(1)求證:DE⊥SC;
(2)若SA=AB=BC=1,求直線AD與平面ABC所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com