已知函數(shù),其中
.
(1)若,求曲線
在點
處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個零點,求
的取值范圍.
(1);(2)
.
解析試題分析:(1)本小題首先代入求得原函數(shù)的導(dǎo)數(shù),然后求出切點坐標(biāo)和切線的斜率,最后利用點斜式求得切線方程
;
(2)本小題首先求得原函數(shù)的導(dǎo)數(shù),通過導(dǎo)數(shù)零點的分析得出原函數(shù)單調(diào)性,做成表格,求得函數(shù)的極大值和極小值
,若要
有三個零點,只需
即可,解不等式即可.
試題解析:(Ⅰ)當(dāng)時,
;
所以曲線在點
處的切線方程為
,
即 6分
(Ⅱ)=
.令
,解得
8分
因,則
.當(dāng)
變化時,
、
的變化情況如下表:
則極大值為:x 0 f’(x) + 0 - 0 + f(x) 遞增 極大值 遞減 極小值 遞增 ,極小值為:
,
若要
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為區(qū)間
.
(1)求函數(shù)的極大值與極小值;
(2)求函數(shù)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是正實數(shù),設(shè)函數(shù)
。
(Ⅰ)設(shè),求
的單調(diào)區(qū)間;
(Ⅱ)若存在,使
且
成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè),試問函數(shù)
在
上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)若,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若恒成立,求
的取值范圍. 注:
是自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)
在
上的最大值;
(2)令,若
在區(qū)間
上不單調(diào),求
的取值范圍;
(3)當(dāng)時,函數(shù)
的圖象與
軸交于兩點
,且
,又
是
的導(dǎo)函數(shù).若正常數(shù)
滿足條件
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com