日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=2cos2(x-
π
6
)+2sin(x-
π
4
)cos(x-
π
4
)-1

(1)求函數f(x)的最小正周期和圖象的對稱軸方程;
(2)求函數f(x)在區間[-
π
12
π
2
]
上的值域.
分析:(1)通過二倍角公式與兩角和的正弦函數化簡函數的表達式,化簡為一個角的一個三角函數的形式,利用周期公式求函數f(x)的最小正周期,利用正弦函數的對稱軸方程求出函數的圖象的對稱軸方程;
(2)通過x∈[-
π
12
π
2
]
,求出2x-
π
6
∈[-
π
3
6
]
,利用函數的單調性求出函數在[-
π
12
π
2
]
上的值域,即可.
解答:解:(1)∵f(x)=2cos2(x-
π
6
)+2sin(x-
π
4
)cos(x-
π
4
)-1

=cos(2x-
π
3
)+2sin(x-
π
4
)cos(x-
π
4
)

=
1
2
cos2x+
3
2
sin2x+sin(2x-
π
2
)

=
1
2
cos2x+
3
2
sin2x-cos2x

=sin(2x-
π
6
)
…(5分)
∴周期 T=
2
.由2x-
π
6
=kπ+
π
2
,得 x=
2
+
π
3
(k∈Z)
∴函數圖象的對稱軸方程為x=
2
+
π
3
(k∈Z)…(7分)
(2)∵x∈[-
π
12
π
2
]
,∴2x-
π
6
∈[-
π
3
6
]

又∵f(x)=sin(2x-
π
6
)
在區間[-
π
12
π
3
]
上單調遞增,
在區間[
π
3
π
2
]
上單調遞減,∴當x=
π
3
時,f(x)取最大值1.
又∵f(-
π
12
)=-
3
2
<f(
π
2
)=1
,∴當x=-
π
12
時,f(x)取最小值-
3
2

∴函數f(x)在區間[-
π
12
π
2
]
上的值域為[-
3
2
,1]
.…(12分)
點評:本題是中檔題,考查三角函數的化簡求值,函數的周期的求法,以及函數的閉區間上的最值的應用,考查計算能力,高考常考題型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2-xx+1

(1)求出函數f(x)的對稱中心;
(2)證明:函數f(x)在(-1,+∞)上為減函數;
(3)是否存在負數x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數x均成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本免费一级 | 国 产 黄 色 大 片 | 久久九九视频 | 91导航| 免费黄色av | 日日干天天操 | 一级黄色免费视频 | 精品日韩 | 2014天堂网 | 免费看黄网 | 欧美顶级黄色大片免费 | 99精品国产一区二区 | 日韩国产精品一区二区 | 午夜美女福利视频 | 国产伦精品一区二区三区视频网站 | 91成人亚洲 | 国产又黄又爽 | 国产一区二区视频在线 | 在线观看免费黄色 | 欧美日韩中文字幕 | 国产精品一品二品 | 国产a久久麻豆入口 | 成人黄色在线视频 | 久久久久国产精品视频 | 国产中文字幕一区二区 | 亚洲欧美中文字幕 | 男女裸体无遮挡做爰 | 亚洲伊人影院 | 精品一区在线播放 | 亚洲区在线 | 亚洲精品一区二区三区精华液 | 黄色一级大片 | 91免费网 | 就爱啪啪网 | 96精品| 欧美1区2区 | 9.1成人免费看片 | 在线免费看毛片 | 一区二区在线视频 | 亚洲免费大片 | www.一区|