【題目】已知橢圓的中心在原點,焦點在
軸上,橢圓的一個頂點為
,右焦點
到直線
的距離為
.
(1)求橢圓的標準方程;
(2)若過作兩條互相垂直的直線
,且
交橢圓
于
、
兩點,
交橢圓
于
、
兩點,求四邊形
的面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】“十三五”規劃確定了到2020年消除貧困的宏偉目標,打響了精準扶貧的攻堅戰,為完成脫貧任務,某單位在甲地成立了一家醫療器械公司吸納附近貧困村民就工,已知該公司生產某種型號醫療器械的月固定成本為20萬元,每生產1千件需另投入5.4萬元,設該公司一月內生產該型號醫療器械x千件且能全部銷售完,每千件的銷售收入為萬元,已知
(1)請寫出月利潤y(萬元)關于月產量x(千件)的函數解析式;
(2)月產量為多少千件時,該公司在這一型號醫療器械的生產中所獲月利潤最大?并求出最大月利潤(精確到0.1萬元).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個函數,如果對任意一個三角形,只要它的三邊長
、
、
都在
的定義域內,就有
、
、
也是某個三角形的三邊長,則稱
為“保三角形函數”.
(1)若是定義在
上的周期函數,且值域為
,證明:
不是保三角形函數;
(2)若是保三角形函數,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司新上一條生產線,為保證新的生產線正常工作,需對該生產線進行檢測,現從該生產線上隨機抽取100件產品,測量產品數據,用統計方法得到樣本的平均數,標準差
,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值.
(1)從該生產線加工的產品中任意抽取一件,記其數據為X,依據以下不等式評判(P表示對應事件的概率)
①
②
③
評判規則為:若至少滿足以上兩個不等式,則生產狀況為優,無需檢修;否則需檢修生產線,試判斷該生產線是否需要檢修;
(2)將數據不在內的產品視為次品,從該生產線加工的產品中任意抽取2件,次品數記為Y,求Y的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右頂點
,離心率為
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點
)為橢圓
上一個動點,過
作線段
的垂線
交橢圓
于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若一個三角形的邊長與面積都是整數,則稱為“海倫三角形”;三邊長互質的海倫三角形,稱為“本原海倫三角形”;邊長都不是3的倍數的本原海倫三角形,稱為“奇異三角形”.
(1)求奇異三角形的最小邊長的最小值;
(2)求證:等腰的奇異三角形有無數個;
(3)問:非等腰的奇異三角形有多少個?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com