C
分析:本題考查的知識點是棱柱的結構特征,及空間中直線與平面之間的位置關系,要求滿足條件的點P,我將可以對K、H、G、B′四個點逐一進行分析,找出棱柱中與平面PEF平行的棱的條數,即可得到答案.
解答:若K點為P,
∵P(K)F∥C'C
∴P(K)F∥C'C∥A'A∥B'B
則棱柱至少有三條棱與平面PEF平行,故A不正確
若H點為P,
∵平面P(H)EF∥平面BC
∴AC∥平面P(H)EF,AB∥平面P(H)EF,BC∥平面P(H)EF
則棱柱至少有三條棱與平面PEF平行,故B不正確
若G點為P,
則棱柱中僅有AB、A'B'與平面PEF平行,故C正確
若B'點為P,
∵則棱柱中只有AB∥平面PEF平行,故D不正確
故選C
點評:判斷或證明線面平行的常用方法有:①利用線面平行的定義(無公共點);②利用線面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性質定理(α∥β,a?α?a∥β);④利用面面平行的性質(α∥β,a?α,a?,a∥α??a∥β).線線垂直可由線面垂直的性質推得,直線和平面垂直,這條直線就垂直于平面內所有直線,這是尋找線線垂直的重要依據.垂直問題的證明,其一般規律是“由已知想性質,由求證想判定”,也就是說,根據已知條件去思考有關的性質定理;根據要求證的結論去思考有關的判定定理,往往需要將分析與綜合的思路結合起來.