如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為
,若不過點A的動直線l與橢圓C相交于P,Q兩點,且
·
=0.
(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知橢圓C1:+
=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點在橢圓
:
上,以
為圓心的圓與
軸相切于橢圓的右焦點
,且
,其中
為坐標原點.
(1)求橢圓的方程;
(2)已知點,設
是橢圓
上的一點,過
、
兩點的直線
交
軸于點
,若
, 求直線
的方程;
(3)作直線與橢圓
:
交于不同的兩點
,
,其中
點的坐標為
,若點
是線段
垂直平分線上一點,且滿足
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在直角坐標系xOy中,點P到拋物線C:y2=2px(p>0)的準線的距離為
.點M(t,1)是C上的定點,A,B是C上的兩動點,且線段AB被直線OM平分.
(1)求p,t的值;
(2)求△ABP面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上且過點P,離心率是
.
(1)求橢圓C的標準方程;
(2)直線l過點E (-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P(x0,y0)(x0≠±a)是雙曲線E:-
=1(a>0,b>0)上一點,M,N分別是雙曲線E的左,右頂點,直線PM,PN的斜率之積為
.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足=λ
+
,求λ的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com