日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f(x)=ln(),則下列正確的是( )
A.非奇非偶函數,在(0,+∞)上為增函數
B.奇函數,在R上為增函數
C.非奇非偶函數,在(0,+∞)上為減函數
D.偶函數,在R上為減函數
【答案】分析:根據>0求出函數的定義域,判斷出函數是非奇非偶函數;再由作差法比較真數的大小,利用定義和對數函數的單調性判斷出函數的單調性.
解答:解:要使f(x)有意義,則>0,
即ex-e-x>0,解得x>0,則f(x)為非奇非偶函數.
設g(x)=
又∵x1>x2>0時,ex1>ex2,e-x2>e-x1
g(x1)-g(x2)=(ex1-ex2)+(e-x2-ex1)>0,
∴g(x1)>g(x2),
即ln()>ln(),f(x1)>f(x2),
∴f(x)在(0,+∞)上為增函數.
故選A.
點評:本題考查了對數型復合函數的性質,判斷函數奇偶性應先求定義域,即判斷定義域是否關于原點對稱,對于對數比較大小,一般是先比較真數的大小,再根據對數函數的單調性和單調性的定義判斷.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)內為單調增函數,求a的取值范圍;
(II) 若函數f(x)在x=O處取得極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果函數f(x)在區間D上有定義,且對任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,則稱函數f(x)在區間D上的“凹函數”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判斷f(x)是否是“凹函數”,若是,請給出證明;若不是,請說明理由;
(Ⅱ)對于(I)中的函數f(x)有下列性質:“若x∈[a,b],則存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用這個性質證明x0唯一;
(Ⅲ)設A、B、C是函數f(x)=ln(1+ex)-x(x∈R)圖象上三個不同的點,求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值與最小值;
(2)當x>0時,求證
1
1+x
<f(
1
x
)<
1
x

(3)當n∈N+且n≥2時,求證:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=ln(x+1)-ax(a∈R)
(1)當a=1時,求f(x)在定義域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范圍;
(3)求證:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=ln(1+x)-
14
x2 是定義在[0,2]上的函數
(1)求函數f(x)的單調區間
(2)若f(x)≥c對定義域內的x恒成立,求c的取值范圍..

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩一级二级三级 | 天天看天天射 | 青青伊人网 | 久久精品国产精品 | 青青草综合网 | 国产免费91 | 成年女人毛片 | 91视频观看 | 亚洲综合二区 | 在线播放h | 精品久久一区二区三区 | 99在线观看视频 | 欧美激情自拍 | 丁香六月激情 | 欧美日韩高清在线 | 成年人毛片 | 日韩黄色一级 | 亚洲一级大片 | 久久久精品 | 国产精品福利在线观看 | av网站在线免费观看 | 欧美成年人视频 | 精品国产一区二区三 | 成人女同在线观看 | 在线黄网| 欧美一级欧美三级 | 久久免费网 | 免费日韩视频 | 午夜影院在线免费观看 | 亚洲性网站| 亚洲精品视频在线观看免费 | 日韩在线观看中文字幕 | 午夜免费福利视频 | 亚洲综合视频在线观看 | 免费观看全黄做爰视频 | 天天干女人 | 国产美女自拍 | 就要干就要操 | 性欧美xxxx | 久久久国产精品视频 | 91在线精品一区二区 |