直線的斜率為-,且直線不通過第一象限,則直線的方程可能是( )
A.3x+4y+7=0
B.4x+3y+7=0
C.4x+3y-42=0
D.3x+4y-42=0
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
OA |
OB |
12 |
5 |
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省牡丹江一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
已知橢圓的中心在原點,焦點為F1(0,-2),F(xiàn)2(0,
),且離心率
.
(1)求橢圓的方程;
(2)直線l(與坐標軸不平行)與橢圓交于不同的兩點A、B,且線段AB中點的橫坐標為,求:直l線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知橢圓E:
(其中
),直 線L與橢圓只有一個公共點T;兩條平行于y軸的直線
分別過橢圓的左、右焦點F1、F2,且直線L分別相交于A、B兩點.
(Ⅰ)若直線L在軸上的截距為
,求證: 直線L斜率的絕對值與橢圓E的離心率相等;(Ⅱ)若
的最大值為1200,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三5月模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂
直于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(3)當P不在軸上時,在曲線
上是否存在兩個不同點C、D關(guān)于
對稱,若存在,
求出的斜率范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com