【題目】已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABCDEF.則下列結論不正確的是( )
A. CD∥平面PAF
B. DF⊥平面PAF
C. CF∥平面PAB
D. CF⊥平面PAD
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(Ⅰ)求橢圓的方程.
(Ⅱ)若,
是橢圓
上兩個不同的動點,且使
的角平分線垂直于
軸,試判斷直線
的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數),在以
為極點,
軸的正半軸為極軸的極坐標系中,射線
,與
,
各有一個交點,當
時,這兩個交點間的距離為2,當
,這兩個交點重合.
(1)分別說明,
是什么曲線,并求出
與
的值;
(2)設當時,
與
,
的交點分別為
,當
,
與
,
的交點分別為
,求四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在
上的奇函數,且當
時,
.
(1)求函數的解析式;
(2)現已畫出函數在
軸左側的圖象,如圖所示,請補全完整函數
的圖象;
(3)根據(2)中畫出的函數圖像,直接寫出函數的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現1次故障,且每臺機器是否出現故障是相互獨立的,出現故障時需1名工人進行維修,每臺機器出現故障需要維修的概率為.
(1)若出現故障的機器臺數為,求
的分布列;
(2) 該廠至少有多少名工人才能保證每臺機器在任何時刻同時出現故障時能及時進行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現故障或出現故障能及時維修,就使該廠產生5萬元的利潤,否則將不產生利潤,若該廠現有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左右焦點分別為
,
,離心率為
,點
在橢圓
上,
,
,過
與坐標軸不垂直的直線
與橢圓
交于
,
兩點,
為
,
的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,且
,求直線
所在的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據四川省民政廳報告,2013年6月29日以來,四川省中東部出現強降雨天氣過程,局地出現大暴雨.暴雨洪澇災害已造成遂寧、德陽、綿陽等12市34縣(市、區)244萬人受災,共造成直接經濟損失85502.41萬元.適逢暑假,小王在某小區調查了50戶居民由于洪災造成的經濟損失,將收集的數據分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).
(1)若先從損失超過6000元的居民中隨機抽出2戶進行調查,求這2戶不在同一小組的概率;(2)洪災過后小區居委會號召小區居民為洪災重災區捐款,小王調查的50戶居民的捐款情況如表,在表格空白處填寫正確的數字,并說明是否有95%以上的把握認為捐款數額多于或少于500元和自身經濟損失是否到4000元有關?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:臨界值表參考公式:K2=.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com