【題目】在數列{an}中,a1= ,an+1=
an , n∈N*
(1)求證:數列{ }為等比數列;
(2)求數列{an}的前n項和.
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數方程
已知曲線,直線
:
(
為參數).
(I)寫出曲線的參數方程,直線
的普通方程;
(II)過曲線上任意一點
作與
夾角為
的直線,交
于點
,
的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程(
)的離心率為
, 短軸長為2.
(1) 求橢圓的標準方程;
(2) 直線(
)與
軸的交點為
(點
不在橢圓外), 且與橢圓交于兩個不同的點
. 若線段
的中垂線恰好經過橢圓的下端點
, 且與線段
交于點
, 求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a∈R,函數f(x)=x|x﹣a|﹣a.
(1)若f(x)為奇函數,求a的值;
(2)若對任意的x∈[2,3],f(x)≥0恒成立,求a的取值范圍;
(3)當a>4時,求函數y=f(f(x)+a)零點的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產、
兩種元件,其質量按測試指標劃分為:大于或等于
為正品,小于
為次品.現從一批產品中隨機抽取這兩種元件各
件進行檢測,檢測結果記錄如下:
B |
由于表格被污損,數據、
看不清,統計員只記得
,且
、
兩種元件的檢測數據的平均值相等,方差也相等.
(1)求表格中與
的值;
(2)從被檢測的件
種元件中任取
件,求
件都為正品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ex﹣ax2﹣2x+b(e為自然對數的底數,a,b∈R)
(1)設f′(x)為f(x)的導函數,求f′(x)的遞增區間;
(2)當a>0時,證明:f′(x)的最小值小于零;
(3)若a<0,f(x)>0恒成立,求符合條件的最小整數b.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年兩會繼續關注了鄉村教師的問題,隨著城鄉發展失衡,鄉村教師待遇得不到保障,流失現象嚴重,教師短缺會嚴重影響鄉村孩子的教育問題,為此,某市今年要為某所鄉村中學招聘儲備未來三年的教師,現在每招聘一名教師需要2萬元,若三年后教師嚴重短缺時再招聘,由于各種因素,則每招聘一名教師需要5萬元,已知現在該鄉村中學無多余教師,為決策應招聘多少鄉村教師搜集并整理了該市100所鄉村中學在過去三年內的教師流失數,得到如下的柱狀圖:記x表示一所鄉村中學在過去三年內流失的教師數,y表示一所鄉村中學未來四年內在招聘教師上所需的費用(單位:萬元),n表示今年為該鄉村中學招聘的教師數,為保障鄉村孩子教育不受影響,若未來三年內教師有短缺,則第四年馬上招聘.
(1)若n=19,求y與x的函數解析式;
(2)若要求“流失的教師數不大于n”的頻率不小于0.5,求n的最小值;
(3)假設今年該市為這100所鄉村中學的每一所都招聘了19個教師或20個教師,分別計算該市未來四年內為這100所鄉村中學招聘教師所需費用的平均數,以此作為決策依據,今年該鄉村中學應招聘19名還是20名教師?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知0<x< ,sinx﹣cosx=
,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,則2a+3b+c=( )
A.50
B.70
C.110
D.120
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求的單調區間;
(Ⅱ)求在區間
上的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】(Ⅰ).
令,得
.
與
的情況如上:
所以,的單調遞減區間是
,單調遞增區間是
.
(Ⅱ)當,即
時,函數
在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,
由(Ⅰ)知在
上單調遞減,在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,函數
在
上單調遞減,
所以在區間
上的最小值為
.
綜上,當時,
的最小值為
;
當時,
的最小值為
;
當時,
的最小值為
.
【題型】解答題
【結束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點
為拋物線
上一點.
(1)求的方程;
(2)若點在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com