【題目】已知圓心(2,﹣3),一條直徑的兩個端點恰好在兩坐標軸上,則這個圓的方程是( )
A.x2+y2﹣4x+6y=0
B.x2+y2﹣4x+6y﹣8=0
C.x2+y2﹣4x﹣6y=0
D.x2+y2﹣4x﹣6y﹣8=0
【答案】A
【解析】解:設直徑的兩個端點分別A(a,0)B(0,b).圓心C為點(2,﹣3),由中點坐標公式得,a=4,b=﹣6,
∴r= |AB|=
=
,
則此圓的方程是(x﹣2)2+(y+3)2=13,
即x2+y2﹣4x+6y=0.
故選:A.
【考點精析】解答此題的關鍵在于理解圓的一般方程的相關知識,掌握圓的一般方程的特點:(1)①x2和y2的系數相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數D、E、F,因之只要求出這三個系數,圓的方程就確定了;(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯.
科目:高中數學 來源: 題型:
【題目】要在墻上開一個上部為半圓,下部為矩形的窗戶(如圖所示),在窗框總長度為l的條件下,
(1)請寫出窗戶的面積S與圓的直徑x的函數關系;
(2)要使窗戶透光面積最大,窗戶應具有怎樣的尺寸?并寫出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域是(0,+∞),且對任意的正實數x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1時,f(x)>0.
(1)求f( )的值;
(2)判斷y=f(x)在(0,+∞)上的單調性,并給出你的證明;
(3)解不等式f(x2)>f(8x﹣6)﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】衣柜里的樟腦丸會隨著時間的揮發而體積縮小,剛放進的新丸體積為a,經過t天后體積V與天數t的關系式為:V=ae﹣kt . 若新丸經過50天后,體積變為 a,則一個新丸體積變為
a需經過的時間為( )
A.125天
B.100天
C.50天
D.75天
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+c(a,b,c∈R且a≠0),若對任意實數x,不等式2x≤f(x) (x+1)2恒成立.
(1)求f(1)的值;
(2)求a的取值范圍;
(3)若函數g(x)=f(x)+2a|x﹣1|,x∈[﹣2,2]的最小值為﹣1,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx+x2(a為實常數).
(1)當a=﹣4時,求函數f(x)在[1,e]上的最大值及相應的x值;
(2)當x∈[1,e]時,討論方程f(x)=0根的個數.
(3)若a>0,且對任意的x1 , x2∈[1,e],都有 ,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com