日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

20.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)上一點到兩焦點間的距離之和為2$\sqrt{2}$,直線4x-3y+3=0被以橢圓C的短軸為直徑的圓M截得的弦長為$\frac{8}{5}$.
(1)求橢圓C的方程;
(2)若橢圓C上存在兩個不同的點A,B,關(guān)于直線l:y=-$\frac{1}{k}$(x+$\frac{1}{2}$)對稱.且:△AOB面積為$\frac{\sqrt{6}}{4}$,求k的值.

分析 (1)由題意可知:2a=2$\sqrt{2}$,a=$\sqrt{2}$,$\frac{8}{5}$=2$\sqrt{{b}^{2}-p9vv5xb5^{2}}$,即$\frac{8}{5}$=2$\sqrt{{b}^{2}-(\frac{3}{5})^{2}}$,解得:b=1,即可求得橢圓的標準方程;
(2)(i)由題意可知:設(shè)直線y=kx+m,代入橢圓方程,利用韋達定理及中點坐標公式求得中點P坐標,代入直線方程l方程,由△>0,即可求得k的取值范圍;
由三角形的面積公式可知:S=$\frac{1}{2}$丨m丨•丨x1-x2丨=$\sqrt{2}$$\sqrt{\frac{{m}^{2}({k}^{2}-{m}^{2}+2)}{({k}^{2}+2)^{2}}}$=$\frac{\sqrt{6}}{4}$,即可求得k的值.

解答 解:(1)∵橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)上一點到兩焦點間的距離之和為2$\sqrt{2}$,即2a=2$\sqrt{2}$,a=$\sqrt{2}$,
由O到直線4x-3y+3=0距離d=$\frac{丨3丨}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{3}{5}$,
直線4x-3y+3=0被以橢圓C的短軸為直徑的圓M截得的弦長為$\frac{8}{5}$,
則$\frac{8}{5}$=2$\sqrt{{b}^{2}-p9vv5xb5^{2}}$,即$\frac{8}{5}$=2$\sqrt{{b}^{2}-(\frac{3}{5})^{2}}$,解得:b=1,
∴橢圓C的方程為:$\frac{{y}^{2}}{2}+{x}^{2}=1$;
(2)由題意可知:直線l:y=-$\frac{1}{k}$(x+$\frac{1}{2}$)對稱,則設(shè)直線l:y=kx+m,A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{y}^{2}}{2}+{x}^{2}=1}\end{array}\right.$,整理得:(2+k2)x2+2kmx+m2-2=0,
由韋達定理可知:x1+x2=-$\frac{2km}{2+{k}^{2}}$,x1•x2=$\frac{{m}^{2}-2}{2+{k}^{2}}$,
根據(jù)題意:△=4k2m2-4(2+k2)(m2-2)=8(k2-m2+2)>0,
設(shè)線段AB的中點P(x0,y0),則x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{km}{2+{k}^{2}}$,y0=kx0+m=$\frac{2m}{2+{k}^{2}}$,
∵點P在直線y=-$\frac{1}{k}$(x+$\frac{1}{2}$)上,$\frac{2m}{2+{k}^{2}}$=-$\frac{1}{k}$(-$\frac{km}{2+{k}^{2}}$+$\frac{1}{2}$),
∴m=-$\frac{2+{k}^{2}}{2k}$,代入△>0,可得3k4+4k2-4>0,
解得:k2>$\frac{2}{3}$,則k<-$\frac{\sqrt{6}}{3}$或k>$\frac{\sqrt{6}}{3}$,
(2)直線AB與y軸交點橫坐標為m,
△AOB面積S=$\frac{1}{2}$丨m丨•丨x1-x2丨=$\frac{1}{2}$•丨m丨•$\frac{\sqrt{8({k}^{2}-{m}^{2}+2)}}{{k}^{2}+2}$=$\sqrt{2}$$\sqrt{\frac{{m}^{2}({k}^{2}-{m}^{2}+2)}{({k}^{2}+2)^{2}}}$,
則$\sqrt{2}$$\sqrt{\frac{(\frac{2+{k}^{2}}{2k})^{2}[{k}^{2}-(\frac{2+{k}^{2}}{2k})^{2}+2]}{({k}^{2}+2)^{2}}}$=$\frac{\sqrt{6}}{4}$,整理得:k2=1,解得:k=±1,
k的值±1.

點評 本題考查橢圓的標準方程,直線與橢圓的位置關(guān)系,考查韋達定理,三角形面積公式的應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=|x+1|+|x-a|的最小值為5,則實數(shù)a=4或-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=${4}^{\frac{1}{2}}$,b=${2}^{\frac{1}{3}}$,c=${5}^{\frac{1}{2}}$,則a、b、c的大小關(guān)系為(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a=log32,b=log2$\frac{1}{3}$,c=20.5,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知平面BCC1B1是圓柱的軸截面(經(jīng)過圓柱的軸截面)BC是圓柱底面的直徑,O為底面圓心,E為母線CC1的中點,已知AB=AC=AA1=4
(1)求證:B1O⊥平面AEO
(2)求二面角B1-AE-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知F是拋物線y2=16x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=12,則線段AB中點到y(tǒng)軸的距離為(  )
A.8B.6C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合 M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,則實數(shù)b的取值范圍是(-5,5$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點P是圓x2+y2=1上的動點,Q是直線l:3x+4y-10=0上的動點,則|PQ|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$f(x)=1+ln({\sqrt{{x^2}-2x+2}-x+1})$,則f(-12)+f(14)=2.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 亚洲高清视频二区 | 中文字幕一区在线观看 | 亚洲精品v日韩精品 | 国产精品免费一区二区三区都可以 | 国产午夜精品一区二区三区嫩草 | 99精品免费视频 | 久久久成人精品 | 日韩中文字幕免费 | 国产精品一区二区三区免费看 | 国产精品久久久久久吹潮 | 国产痴汉av久久精品 | 国产一级一级毛片女人精品 | 日本一二三区视频 | 久草在线在线精品观看 | 亚洲精品久久 | 特级毛片在线观看 | 久久精品黄色 | 精品久久国产 | 蜜桃做爰免费网站 | 黄免费视频 | 国产成人一区二区三区 | 久久久久国产 | 国产精品久久一区 | 久久91| 黄色免费网站在线看 | 麻豆精品国产91久久久久久 | 亚欧毛片 | av在线免费播放 | 狠狠操中文字幕 | 天天射天天 | 成人免费在线观看 | 91精品一区二区三区久久久久久 | 一区二区三区亚洲视频 | 精品伊人 | 91精品国产综合久久久久久丝袜 | 精品欧美一二三区 | 九九九九精品九九九九 | 日韩精品在线免费观看视频 | 黄av免费 | 亚洲一道本 | 精品久久久久久久久久久 |