日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
試題大類:高考真題;題型:解答題;學期:2008年;單元:2008年普通高等學校夏季招生考試數學文史類(重慶卷);知識點:空間直線和平面;難度:較難;其它備注:20主觀題;分值:12$如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小為,求:

(1)點B到平面α的距離;

(2)異面直線l與AB所成的角(用反三角函數表示).

解:(1)如圖(1),過點B′作直線B′C∥A′A且使B′C=A′A.

(1)

過點B作BD⊥CB′,交CB′的延長線于D.

由已知AA′⊥l,可得DB′⊥l,又已知BB′⊥l,故l⊥平面BB′D,得BD⊥l.

又因BD⊥CB′,從而BD⊥平面α,BD之長即為點B到平面α的距離.

因B′C⊥l且BB′⊥l,

故∠BB′C為二面角α-l-β的平面角.

由題意,∠BB′C=,因此在Rt△BB′D中,BB′=2,∠BB′D=π-∠BB′C=,BD=BB′·sin∠BB′D =.

(2)連接AC、BC.因B′C∥A′A,B′C=A′A,AA′⊥l,知A′ACB′為矩形,故AC∥l.所以∠BAC或其補角為異面直線l與AB所成的角.

在△BB′C中,B′B=2,B′C=3,∠BB′C=,則由余弦定理,

BC==.

因BD⊥平面α,且DC⊥CA,由三垂線定理知AC⊥BC,

故在△ABC中,∠BCA=,sin∠BAC=.

因此,異面直線l與AB所成的角為arcsin.

練習冊系列答案
相關習題

同步練習冊答案
主站蜘蛛池模板: 精品免费| 亚洲在线观看视频 | 国产精品成人一区二区 | 黄色国产精品 | 亚洲精品不卡 | 日韩在线精品视频 | 亚洲经典一区二区三区 | 日本少妇中文字幕 | 青青草av| 五月婷综合 | 另类专区亚洲 | 亚洲色欲色欲www在线观看 | 免费a在线观看 | 精品国产一二三区 | 日韩在线综合 | 欧美激情一二三区 | 91午夜精品亚洲一区二区三区 | 日本不卡视频在线观看 | 九九视频在线观看 | 一级二级片 | 久草福利在线视频 | 久久精品美女 | 日韩成人精品一区二区 | 欧美一区二区免费 | 欧美区在线| 亚洲国产区 | 久久久久免费视频 | 日本在线免费观看 | 欧美久久久久久 | 黄色一级大片在线免费看国产一 | 欧美日韩国产在线观看 | 免费一级黄色 | 色吧综合| 性久久久久久 | 欧美成人免费在线视频 | 一区二区三区久久 | 国产精品偷拍 | 黄色片网站免费 | 免费性视频 | 成人精品一区二区三区 | 欧美一级网站 |