日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大小;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為?若存在,求出線段CQ的長;若不存在,請說明理由.

【答案】分析:(1)以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB,AD,AZ分別為x軸、y軸、z軸的正半軸建系如圖示,寫出點(diǎn)E(0,0,1)、G(1,2,0)、B(2,0,0)、D(0,2,0),和向量 的坐標(biāo),利用異面直線EG與BD所成角公式求出異面直線EG與BD所成角大小即可;
(2)對于存在性問題,可先假設(shè)存在,即先假設(shè)在線段CD上存在一點(diǎn)Q滿足條件,設(shè)點(diǎn)Q(x,2,0),平面EFQ的法向量為 ,再點(diǎn)A到平面EFQ的距離,求出x,若出現(xiàn)矛盾,則說明假設(shè)不成立,即不存在;否則存在.
解答:解:(1)以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB,AD,AZ分別為x軸、y軸、z軸的正半軸建立空間直角坐標(biāo)系如圖示,點(diǎn)E(0,0,1)、G(1,2,0)、B(2,0,0)、D(0,2,0),

設(shè)異面直線EG與BD所成角為θ =
所以異面直
線EG與BD所成角大小為
(2)假設(shè)在線段CD上存在一點(diǎn)Q滿足條件,
設(shè)點(diǎn)Q(x,2,0),平面EFQ的法向量為
則有 得到y(tǒng)=0,z=xx,取x=1,
所以

又x>0,解得
所以點(diǎn)

所以在線段CD上存在一點(diǎn)Q滿足條件,且線段CQ的長度為
點(diǎn)評:考查利用空間向量證明垂直和求夾角和距離問題,以及平行向量與共線向量的判定定理,體現(xiàn) 了轉(zhuǎn)化的思想方法,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大小;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為
4
5
?若存在,求出線段CQ的長;若不存在,請說明理由.
(文)已知坐標(biāo)平面內(nèi)的一組基向量為
e
1
=(1,sinx)
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)當(dāng)
e
1
e
2
都為單位向量時,求|
a
|

(2)若向量
a
和向量
b
=(1,2)
共線,求向量
e
1
e
2
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大小;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為
45
?若存在,求出線段CQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海普陀區(qū)高考數(shù)學(xué)三模試卷(文理合卷)(解析版) 題型:解答題

(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大小;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為?若存在,求出線段CQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大小;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為?若存在,求出線段CQ的長;若不存在,請說明理由.
(文)已知坐標(biāo)平面內(nèi)的一組基向量為,其中,且向量
(1)當(dāng)都為單位向量時,求
(2)若向量和向量共線,求向量的夾角.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 一区二区免费播放 | 国产黄色大片 | 一区二区视频在线 | 精品国产乱码久久久久久闺蜜 | 黄色资源在线观看 | 国产精品久久久久久久久 | 秋霞成人| 天天干夜夜爽 | 欧美成人一区二区三区片免费 | www.日韩 | 欧美激情自拍 | www.久久久| 免费看的av | 国产久| 午夜精品久久久久久久久久久久 | 久久久久久久久久久高潮 | 久久久精品免费视频 | 免费观看一级特黄欧美大片 | 天天摸夜夜摸爽爽狠狠婷婷97 | 精品日韩av | 国产片久久 | 性国产xxxx乳高跟 | 日韩一区二区三区四区五区六区 | www.亚洲精品| 青青青免费在线视频 | 国产精品成人在线观看 | 99精品国产在热久久 | 天堂男人在线 | 99久久精品免费看国产免费软件 | 国产日本亚洲欧美 | 久久久久久精 | 日韩欧美在线一区 | 日本在线观看www | 成人精品一区二区 | 国产精品一区av | 久久国产精品91 | 超碰超碰97 | 国产精品看片 | 98精品国产高清在线xxxx天堂 | 九九热最新视频 | 欧美精品一区二区三区在线四季 |