定義在[1,+∞)上的函數f(x)滿足:①f(2x)=cf(x)(c為正常數);
②當2≤x≤4時,f(x)=1-|x-3|.試解答下列問題:
(1)設c>2,方程f(x)=2的根由小到大依次記為a1,a2,a3,…,an,…,試證明:數列a2n-1+a2n為等比數列;
(2)①是否存在常數c,使函數的所有極大值點均落在同一條直線上?若存在,試求出c的所有取值并寫出直線方程;若不存在,試說明理由;②是否存在常數c,使函數的所有極大值點均落在同一條以原點為頂點的拋物線上?若存在,試求出c的所有取值并寫出拋物線方程;若不存在,試說明理由.
【答案】
分析:(1)先利用分類討論的方法化簡函數f(x),令

,從而n≥3,故

或

,當n≥3時,


=

,于是a
1+a
2=2
2+2
3,a
3+a
4=2
3+2
4,從而a
2n-1+a
2n=2
n+1+2
n+2=12•2
n-1,n∈N
*.從而得出數列a
2n-1+a
2n構成以12為首項,2為公比的等比數列.
(2)記函數

的極大值點為p
n(x
n,y
n).由

=

(k表示直線的斜率),得c=2或c=1.分別求出當c=2時的拋物線方程,以及當c=4,

時,拋物線方程即可.
解答:解:函數f(x)是一個分段函數.

;

;

.
(1)令

,(2)
從而n≥3,故

或

,于是,

或

.
當n≥3時,


=

故

,

,

,

,于是a
1+a
2=2
2+2
3,a
3+a
4=2
3+2
4,從而a
2n-1+a
2n=2
n+1+2
n+2=12•2
n-1,n∈N
*.
故數列a
2n-1+a
2n構成以12為首項,2為公比的等比數列.(6分)
(2)記函數

的極大值點為p
n(x
n,y
n).
令

,即x
n=3•2
n-2時,y
n=c
n-2,故p
n(3•2
n-2,c
n-2).
分別令n=1,2,3得

,p
2(3,1),p
3(6,c).
由

=

(k表示直線的斜率),得c=2或c=1.
當c=2時,y
n=2
n-2,x
n=3•2
n-2,所有極大值點均在直線

上;
當c=1時,y
n=1對n∈N
*恒成立,此時極大值點均在直線y=1上.(10分)
以原點為頂點的拋物線方程可設為x
2=py(p≠0)或y
2=qx(q≠0).
若p
n(3•2
n-2,c
n-2).在拋物線x
2=py(p≠0)上,則(3•2
n-2)
2=pc
n-2,
即

對n∈N
*恒成立,從而c=4,p=9,拋物線方程為x
2=9y;
若p
n(3•2
n-2,c
n-2).在拋物線y
2=qx(q≠0)上,則(c
n-2)
2=3q•2
n-2,
即

對n∈N
*恒成立,從而

,拋物線方程為y
2=

x(14分)
點評:本小題主要考查拋物線的標準方程、利用導數研究函數的極值、不等式的解法、數列與函數的綜合等基礎知識,考查運算求解能力、化歸與轉化思想.屬于基礎題.