【題目】在邊長為2的菱形中,
,將菱形
沿對角線
折起,使得平面
平面
,則所得三棱錐
的外接球表面積為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種產品的質量,從中分別隨機抽取了10件樣品,測量產品中某種元素的含量(單位:毫克),如圖所示是測量數據的莖葉圖.規定:當產品中的此中元素的含量不小于18毫克時,該產品為優等品.
(1)試用樣品數據估計甲、乙兩種產品的優等品率;
(2)從乙產品抽取的10件樣品中隨機抽取3件,求抽到的3件樣品中優等品數的分布列及其數學期望
;
(3)從甲產品抽取的10件樣品中有放回地隨機抽取3件,也從乙產品抽取的10件樣品中有放回地隨機抽取3件;抽到的優等品中,記“甲產品恰比乙產品多2件”為事件,求事件
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線
,過點
的直線
交拋物線于
,
,
,
兩點.當
垂直于
軸時,
的面積為
.
0
(1)求拋物線的方程:
(2)設線段的垂直平分線交
軸于點
.
①證明:為定值:
②若,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體中,
,
,
,
是棱
上的一條線段,且
,
是
的中點,
是棱
上的動點,則
①四面體的體積為定值
②直線到平面
的距離為定值
③點到直線
的距離為定值
④直線與平面
所成的角為定值
其中正確結論的編號是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的上頂點為
,左,右焦點分別為
,
,
的面積為
,直線
的斜率為
.
為坐標原點.
(1)求橢圓的方程;
(2)設過點的直線
與橢圓
交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(
為參數),直線
(
為參數,
),直線
與曲線
相切于點
,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程及點
的極坐標;
(2)曲線的直角坐標方程為
,直線
的極坐標方程為
,直線
與曲線
交于在
,
兩點,記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的普通方程為
,以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(I)求的參數方程與
的直角坐標方程;
(II)射線與
交于異于極點的點
,與
的交點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC
,則三棱錐P﹣ABC外接球的表面積為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年春節期間,我國高速公路繼續執行“節假日高速公路免費政策”某路橋公司為掌握春節期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數,統計發現這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區間,9:40~10:00記作
,10:00~10:20記作
,10:20~10:40記作
.例如:10點04分,記作時刻64.
(1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數據用該組區間的中點值代表);
(2)為了對數據進行分析,現采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設抽到的4輛車中,在9:20~10:00之間通過的車輛數為X,求X的分布列與數學期望;
(3)由大數據分析可知,車輛在每天通過該收費點的時刻T服從正態分布,其中
可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,
可用樣本的方差近似代替(同一組中的數據用該組區間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(結果保留到整數).
參考數據:若,則
,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com