日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

對于數(shù)列{xn},從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學在學習了這一個概念之后,打算研究首項為a1,公差為d的無窮等差數(shù)列{an}的子數(shù)列問題,為此,他取了其中第一項a1,第三項a3和第五項a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無窮等差數(shù)列{an}中,是否存在無窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請給出數(shù)列{bn}的通項公式并證明;若不存在,說明理由;
(3)他在研究過程中猜想了一個命題:“對于首項為正整數(shù)a,公比為正整數(shù)q(q>1)的無窮等比數(shù)列{cn},總可以找到一個子數(shù)列{bn},使得{dn}構成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項ck,cm,cn(k<m<n),由ck+cn與2cm的大小關系去判斷該命題是否正確.他將得到什么結論?

解:(1)由題意可得a32=a1a5,…..(2分)
即(a1+2d)2=a1(a1+4d),解得d=0.…..(4分)
(2)由題意可得an=1+3(n-1),如bn=4n-1便為符合條件的一個子數(shù)列.…..(7分)
下面證明:因為bn=4n-1=(1+3)n-1=1+3+32+…+3n-1=1+3M,…..(9分)
這里M=+3+…+3n-2為正整數(shù),
所以,bn=1+3M=1+3[(M+1)-1]是{an}中的第M+1項,….(11分)
(3)該命題為假命題.….(12分)
由已知可得
因此,又
=aqk-1(1+qn-k-2qm-k),…..(15分)
由于k,m,n是正整數(shù),且n>m,故n≥m+1,n-k≥m-k+1,
又q是滿足q>1的正整數(shù),則q≥2,
∴1+qn-k-2qm-k≥1+qm-k+1-2qm-k=1+qqm-k-2qm-k≥1+2qm-k-2qm-k=1>0,
所以,ck+cn>2cm,從而原命題為假命題.…..(18分)
分析:(1)由題意可得(a1+2d)2=a1(a1+4d),解之即可;
(2)可舉bn=4n-1,然后結合二項式定理證明即可;
(3)命題為假命題,由不等式的性質可證ck+cn>2cm,故不成等差數(shù)列.
點評:本題考查合情推理,涉及數(shù)列的等差等比的判定,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•徐匯區(qū)一模)對于數(shù)列{xn},從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學在學習了這一個概念之后,打算研究首項為a1,公差為d的無窮等差數(shù)列{an}的子數(shù)列問題,為此,他取了其中第一項a1,第三項a3和第五項a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無窮等差數(shù)列{an}中,是否存在無窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請給出數(shù)列{bn}的通項公式并證明;若不存在,說明理由;
(3)他在研究過程中猜想了一個命題:“對于首項為正整數(shù)a,公比為正整數(shù)q(q>1)的無窮等比數(shù)列{cn},總可以找到一個子數(shù)列{bn},使得{dn}構成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項ck,cm,cn(k<m<n),由ck+cn與2cm的大小關系去判斷該命題是否正確.他將得到什么結論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)對于數(shù)列{xn},從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學在學習了這一個概念之后,打算研究首項為正整數(shù)a,公比為正整數(shù)q(q>0)的無窮等比數(shù)列{an}的子數(shù)列問題.為此,他任取了其中三項ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比數(shù)列,求k,m,n之間滿足的等量關系;
(2)他猜想:“在上述數(shù)列{an}中存在一個子數(shù)列{bn}是等差數(shù)列”,為此,他研究了ak+an與2am的大小關系,請你根據(jù)該同學的研究結果來判斷上述猜想是否正確;
(3)他又想:在首項為正整數(shù)a,公差為正整數(shù)d的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市徐匯區(qū)高三上學期期末考試文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學在學習了這一個概念之后,打算研究首項為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項,第三項和第五項.

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個命題:“對于首項為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個子數(shù)列,使得構成等差數(shù)列”. 于是,他在數(shù)列中任取三項,由的大小關系去判斷該命題是否正確. 他將得到什么結論?

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于數(shù)列{xn},從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學在學習了這一個概念之后,打算研究首項為正整數(shù)a,公比為正整數(shù)q(q>0)的無窮等比數(shù)列{an}的子數(shù)列問題.為此,他任取了其中三項ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比數(shù)列,求k,m,n之間滿足的等量關系;
(2)他猜想:“在上述數(shù)列{an}中存在一個子數(shù)列{bn}是等差數(shù)列”,為此,他研究了ak+an與2an的大小關系,請你根據(jù)該同學的研究結果來判斷上述猜想是否正確;
(3)他又想:在首項為正整數(shù)a,公差為正整數(shù)d的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费黄色在线 | 一区三区视频 | 成人免费视频一区 | 精品精品| 日本一二三区视频 | 久久99蜜桃综合影院免费观看 | 污污视频网站 | 久久久久久久久久毛片 | 青草青草视频2免费观看 | 久久91精品国产 | 日韩2区| 国产一区二区精品 | 久操综合| 日本一区二区视频在线观看 | 狠狠操夜夜操 | 亚洲成人久久久 | 一区二区三区在线播放 | 欧美在线观看禁18 | 五月激情综合婷婷 | 黄色在线观看 | 黄色免费观看网站 | 欧美日韩精品亚洲 | 最新版天堂资源中文在线 | 美女福利视频网站 | 日韩一区二区在线免费观看 | 欧美精品成人在线视频 | 久久四色| 极品毛片 | av毛片在线免费看 | 黄色片免费在线 | 中文视频一区 | 免费视频一区 | 久久福利 | 欧美成人伊人 | 国产精品久久国产精麻豆99网站 | 久久精品99国产精品酒店日本 | 台湾佬成人 | 日韩另类 | 日韩成人av在线 | 中文字幕av亚洲精品一部二部 | 最新国产精品精品视频 |