【題目】已知拋物線:
(
),過點
且斜率為1的直線
與拋物線
交于
,
兩點,且
為
的中點.
(1)求拋物線的方程;
(2)設直線與
軸交點為
,若過
的直線
與拋物線
交于
,
兩點,求證:
為定值.
科目:高中數學 來源: 題型:
【題目】某班有個小組,甲、乙、丙三人分別在不同的小組.某次數學考試成績公布情況如下:甲和三人中等第
小組的那位的成績不一樣,丙比三人中第
組的那位的成績低,三人中第
小組的那位比乙的成績高.若將甲、乙、丙三人按數學成績由高到低排列,則正確的排列順序是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
的參數方程為
(
為參數),在以原點
為極點,
軸的非負半軸為極軸建立的極坐標系中,直線
的極坐標方程為
.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)設直線與
軸,
軸分別交于
,
兩點,點
是圓
上任一點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態度,在普通行人中隨機選取了200人進行調查,當不處罰時,有80人會闖紅燈,處罰時,得到如表數據:
處罰金額 | 5 | 10 | 15 | 20 |
會闖紅燈的人數 | 50 | 40 | 20 | 10 |
若用表中數據所得頻率代替概率.
(1)當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?
(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;
類是其他市民.現對
類與
類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為
類市民的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
平面直角坐標系xOy中,曲線C:.直線l經過點P(m,0),且傾斜角為
.O為極點,以x軸正半軸為極軸,建立極坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
經過點
,其傾斜角為
.以原點
為極點,以
軸非負半軸為極軸,與直角坐標系
取相同的長度單位,建立極坐標系.設曲線
的極坐標方程為
.
(1)寫出直線的參數方程,若直線
與曲線
有公共點,求
的取值范圍.
(2)設為曲線
上任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1, 在直角梯形中,
,
,
,
為線段
的中點. 將
沿
折起,使平面
平面
,得到幾何體
,如圖2所示.
(1)求證: 平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
的最大值為
.
(Ⅰ)求實數的值;
(Ⅱ)當時,討論函數
的單調性;
(Ⅲ)當時,令
,是否存在區間
.使得函數
在區間
上的值域為
若存在,求實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com