【題目】設f(x)是定義在R上的奇函數,且當x≥0時,f(x)=x2 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數t的取值范圍是 .
【答案】[ ,+∞)
【解析】解:當x≥0時,f(x)=x2∵函數是奇函數
∴當x<0時,f(x)=﹣x2
∴f(x)= ,
∴f(x)在R上是單調遞增函數,
且滿足2f(x)=f( x),
∵不等式f(x+t)≥2f(x)=f( x)在[t,t+2]恒成立,
∴x+t≥ x在[t,t+2]恒成立,
即:x≤(1+ )t在[t,t+2]恒成立,
∴t+2≤(1+ )t
解得:t≥ ,
所以答案是:[ ,+∞).
【考點精析】本題主要考查了函數奇偶性的性質的相關知識點,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當|MN|=2 時,求直線l方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)
某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區間的頻率代替最高氣溫位于該區間的概率。
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.學#科@網
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=loga(ax+1)+mx是偶函數.
(1)求m;
(2)當a>1時,若函數f(x)的圖像與直線l:y=﹣mx+n無公共點,求n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經》和《易經》里對二十四節氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其他節氣的晷影長則是按照等差數列的規律計算得出的.下表為《周髀算經》對二十四節氣晷影長的記錄,其中寸表示115寸
分(1寸=10分).
節氣 | 冬至 | 小寒(大雪) | 大寒(小雪) | 立春(立冬) | 雨水(霜降) | 驚蟄(寒露) | 春分(秋分) |
晷影長(寸) | 135 | 75.5 | |||||
節氣 | 清明(白露) | 谷雨(處暑) | 立夏(立秋) | 小滿(大暑) | 芒種(小暑) | 夏至 | |
晷影長(寸) | 16.0 |
已知《易知》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經》中所記錄的驚蟄的晷影長應為__________寸.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產甲、乙兩種產品,其產量分別為45個與55個,所用原料分別為A、B兩種規格的金屬板,每張面積分別為2m2與3m2 . 用A種規格的金屬板可造甲種產品3個,乙種產品5個;用B種規格的金屬板可造甲、乙兩種產品各6個.問A、B兩種規格的金屬板各取多少張,才能完成計劃,并使總的用料面積最省?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com