【題目】已知等差數列{an}的公差d≠0,且a1 , a3 , a13成等比數列,若a1=1,Sn是數列{an}前n項的和,則 (n∈N+)的最小值為( )
A.4
B.3
C.2 ﹣2
D.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺ABO﹣A1B1O1中,側面AOO1A1與側面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)證明:AB1⊥BO1;
(2)求直線AO1與平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=e|lnx|(e為自然對數的底數).若x1≠x2且f(x1)=f(x2),則下列結論一定不成立的是( )
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=,下列結論中錯誤的是
A.
, f(
)=0
B. 函數y=f(x)的圖像是中心對稱圖形
C. 若是f(x)的極小值點,則f(x)在區間(-∞,
)單調遞減
D. 若是f(x)的極值點,則
(
)=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)試在線段AC上一點P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,點C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點E.若EB=6,EC=6 ,則BC的長為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=﹣an﹣( )n﹣1+2(n∈N*),數列{bn}滿足bn=2nan .
(Ⅰ)求證數列{bn}是等差數列,并求數列{an}的通項公式;
(Ⅱ)設cn=log2 ,數列{
}的前n項和為Tn , 求滿足Tn
(n∈N*)的n的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的右焦點為
,且橢圓
上一點
到其兩焦點
,
的距離之和為
.
(1)求橢圓的標準方程;
(2)設直線:
(
)與橢圓
交于不同兩點
,
,且
,若點
滿足
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com