日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
選修4-1:幾何證明選講
如圖,△ABC內接于⊙O,AB是⊙O的直徑,PA是過點A的直線,且∠PAC=∠ABC.
(1)求證:PA是⊙O的切線;
(2)如果弦CD交AB于點E,AC=8,CE:ED=6:5,AE:EB=2:3,求直徑AB的長.

【答案】分析:(1)利用切線的判定定理:只要證明∠PAB=90°,又經過半徑的外端即可.
(2)設CE=6k,ED=5k,AE=2m,EB=3m,利用相交弦定理可得AE•EB=CE•ED,于是6m2=30k2,得m=5k.由△AEC∽△DEB,可得DB8=3m6k,得出BD=45.由△CEB∽△AED,得BCAD=CEAE.在Rt△ABC,Rt△ADB中,利用勾股定理可得BC2=25m2-64,AD2=25m2-80,即可解出.
解答:(1)證明:AB為直徑,∠ACB=90°,∴∠CAB+∠ABC=90°,
∵∠PAC=∠ABC,∴∠PAC+∠CAB=90°,
∴PA⊥AB,∵AB為直徑,∴PA為圓的切線.
(2)設CE=6k,ED=5k,AE=2m,EB=3m,
∵AE•EB=CE•ED,∴6m2=30k2,得m=k.
連接DB,由△AEC∽△DEB,∴,∴BD=
連接AD,由△CEB∽△AED,得
在Rt△ABC,Rt△ADB中,BC2=25m2-64,AD2=25m2-80,于是有
解得m=2,∴AB=AE+EB=10.
點評:本題綜合考查了切線的判定定理、相交弦定理、三角形相似、勾股定理、成比例線段等基礎知識與方法,需要較強的推理能力和計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=1+2t
(t為參數),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久国产视频 | 国产一区二区三区久久久 | 亚洲成人免费视频 | 中文字幕 在线观看 | 午夜网| 91在线免费视频 | 日韩成人短视频 | 国产美女一区二区 | 色婷婷综合久久久久中文一区二区 | 国产成人免费 | 欧美一区二区三区电影 | 欧美在线视频一区二区 | 国产精品国产三级国产aⅴ入口 | 欧美日韩精品久久 | 日韩精品一区二区在线观看 | 久久精品一区二区三区四区 | 美女一级毛片 | 久精品视频 | 一本久久a久久精品亚洲 | 国产伦精品一区二区三区在线 | 日本精a在线观看 | 美女毛片免费看 | 日韩精品视频网 | av在线播放免费 | 国产欧美日韩综合精品一区二区 | 久久99精品久久久久久琪琪 | 性人久久久 | 久久福利 | 欧美精品成人一区二区三区四区 | 成人一区二区三区在线观看 | 午夜视频你懂的 | 超碰在线播| 97超碰人人 | 欧美成a | 好大好爽快点深一点陶软 | 久久国产一区 | 青娱乐青青草 | 黑人巨大精品欧美一区二区三区 | 天堂中文资源在线 | 国产精品地址 | 国产九九精品 |