分析:(1)由已知可得3tS
n-(2t+3)S
n-1=3t(n≥2),兩式相減可得數列a
n+1與a
n的遞推關系并作商得
=,再驗證
=即得證;
(2)由(1)求出f(t),把f(t)的解析式代入b
n,得b
n+1=
+b
n,判斷出{b
n}是一個首項為1,公差為
的等差數列.進而根據等差數列的通項公式求得答案;
(3)把式子b
1b
2-b
2b
3+b
3b
4-…+b
2n-1b
2n-b
2nb
2n+1化簡,根據{b
n}是等差數列,代入前n項和公式,注意公差的變化,再進行化簡.
解答:(1)證明:∵3tS
n+1-(2t+3)S
n=3t,
∴3tS
n-(2t+3)S
n-1=3t,(n≥2),
兩式相減得3ta
n+1-(2t+3)a
n=0,
又∵t>0,∴
=(n≥2),
當n=2時,3tS
2-(2t+3)S
1=3t,
即3t(a
1+a
2)-(2t+3)a
1=3t,且a
1=1,
得a
2=
,則
=,
即
=對n≥1都成立,
∴{a
n}為以1為首項,
為公比的等比數列,
(2)解:由已知得,f(t)=
,
∴
bn+1=f()=
=
=
+bn,
即
bn+1-bn=,
∴{b
n}是一個首項為1,公差為
的等差數列,
則b
n=1+(n-1)×
=
n+
,
(3)解:T
n=b
1b
2-b
2b
3+b
3b
4-…+b
2n-1b
2n-b
2nb
2n+1?
=b
2(b
1-b
3)+b
4(b
3-b
5)+…+b
2n(b
2n-1-b
2n+1)=-2d(b
2+b
4+…+b
2n)
=-2×
(b
2+b
4+…+b
2n)=-2×
[
n+
×
]
=
-n2-n.
點評:本題考查了利用遞推關系實現數列和與項的相互轉化,進而求遞推公式,再進行判斷數列的特點,考查了等比數列的定義,等差數列的通項公式、前n項和公式的運用,數列的求和等問題,以及運算能力.